

NORTHERN ARIZONA UNIVERSITY

Estimating the Background Potential of Quantum Constrictions Using Scanning Gate Microscopy and Machine Learning

Carlo R. daCunha¹, David Ferry², Nobuyuki Aoki³

¹ School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ

² Center for Solid State Electronics Research, Arizona State University, AZ

³ Department of Electronics, Chiba University, Japan

65th Electronic Materials Conference Nanoscale Characterization – June 28th

Quantum Materials

Quantum Materials

Bi₂Te₃

Quantum Materials

Structure of the Talk

- Quantum Point Contacts (QPC)
- Scanning Gate Microscopy (SGM)
- Device Fabrication
- Characterization
 - Transmission
 - Shubnikov-de Haas
 - SGM
- Machine Learning
 - Convolutional Neural Nets
 - Cellular Neural Nets
- Stigmergy Meta-Heuristics
 - Roughness
 - Correlations
- Conclusions

200

400

Position [nm]

600

800

1000

0

B.J. van Wees et al. "Quantized conductance of point contacts in a two-dimensional electron gas". *Phys. Rev. Let.* **60**-9 (1988) 848–850.

1st Order Perturbation Theory:

M. A. Topinka, B. J. LeRoy, S. E. J. Shaw, E. J. Heller, R. M. <u>Westervelt</u>, K. D. Maranowski, A. C. Gossard, "Imaging Coherent Electron Flow from a Quantum Point Contact", *Science* **289** (2000) 2323.

Device Fabrication

Heterostructure

MBE-grown quantum well

Hall bar

Electron beam lithography

Characterization

- Shubnikov de-Haas
- Quantum Hall
- Quantum Chaos

C. R. da Cunha, et al. Imaging of quantum interference patterns within a quantum point contact *Appl. Phys. Lett.* **89-24** (2006) 242109.

C. R. da Cunha, et al. Scanning gate imaging of a disordered quantum point contact *J. Phys. Cond. Matt.* **26-19** (2014) 193202.

IF {

- 1. The perturbation is sufficiently small;
- 2. The induced potential is delta-shaped
- 3. Wave function is given solely by states at the Fermi energy;
- 4. The conductance does not change much with Fermi energy (plateau);

Then {

Changes in conductance (ΔG) \propto local density of states (LDOS).

$$\Delta G(\boldsymbol{r_0}) \approx V_0 \frac{\partial G}{\partial E_F} |\boldsymbol{\varphi}_n(\boldsymbol{r_n})|^2$$

But...

Clouds are not spheres, mountains are not cones, coastlines are not circles, barks are not smooth, lighting does not travel in a straight line,...

B. Mandelbrot (1924 – 2010) $\dots \Delta G$ is not small, the tip potential is not delta-shaped, not all states are in the Fermi level, and the conductance changes considerably with the Fermi level.

Machine Learning

- Cellular Neural Networks
- Stigmergy Meta-heuristics

Inverse Problem

Slow processing limits the number of training samples!

10k pairs with random Gaussian noise.

 $CNN \equiv Dynamical System. Attractor: X(t \rightarrow \infty)$

C. R. da Cunha, et al. A method for finding the background potential of quantum devices from scanning gate microscopy data using machine learning, *Mach. Learn. Sci. Tech.* **3** (2022) 025013.

- Generate random population (potentials μ);
- Evaluate LDOS' via Green's functions;
- Get rewards r for all individuals (correlation with expected LDOS);
- Relax all individuals towards the one with the highest reward and add noise:

$$\frac{d \mu(r,t)}{dt} = -\frac{\mu(r,t) - \mu_{max}}{\tau} + \theta(r) \eta \longrightarrow \text{Gaussian noise}$$

$$\mu_0 e^{-\gamma r} \text{ High rewards, less noise}$$

$$\frac{no}{r_{max} > r_{th}?}$$

Experimental (expected)

Generated (winner)

C. R. da Cunha, et al. An investigation of the background potential in quantum constrictions using scanning gate microscopy and a swarming algorithm, *Physica A* **614** (2023) 128550.

Potential Roughness

Potential Distribution

No fluctuation scaling. Equally important points.

Two-Point Correlation Function

Box Dimension

Static Alloy Potential

SGM images seem to be influenced by modes supported by the potential.

Conclusions

Quantum Point Contacts

- Case study: Disorder QPC
- SGM: Not simple interpretation
- Standard convolution layers not adequate
- Cellular neural networks are more adequate
- Swarming algorithm gets closer to reality (> 72 %)
- Rough potentials influence images at small base conductance
- All points in the disordered potential are equally important
- SGM images seem to be influenced by modes of the potential

Machine learning

Useful tool for inverse problems (if properly used) Inverse <u>design</u> of new devices and materials!

Thank You

Carlo R. daCunha

Carlo.Cunha@nau.edu http://ac.nau.edu/~cc3682

School of Informatics, Computing, and Cyber-Systems Northern Arizona University Flagstaff, AZ

"Nullius addictus iurare in verba magistri, quo me cumque rapit tempestas, deferor hospes." H. Flaccus

