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Bifurcation and Symmetry in Convection

James W. Swift

Abstract

The theory of bifurcation with symmetry is applied to the onset of convection in
a fluid layer heated from below. Doubly diffusive convection illustrates the gen-
eral theory, which describes selection between the possible cellular patterns:
rolls, hexagons, triangles, squares, and rectangles. Double periodicity in the
horizontal plane is imposed, thus allowing only a finite number of convection
rolls to become unstable at the onset of convection. Each roll has a time-
dependent complex amplitude and the center manifold theorem allows a com-
plete description of the dynamics near the instability in terms of an ordinary
differential equation for the critical amplitudes. These ordinary differential
equations are called normal forms. For the cases discussed here there are 1, 2,
3, 4, or 8 complex amplitudes (i.e. rolls) which go unstable simultaneously. The
normal forms have a high degree of symmetry which allows a complete charac-
terization of the dynamics in terms of a few parameters which cannot be elim-
inated through scaling. These parameters are evaluated for doubly diflusive
convection. A classification of all possible generic bifurcations is given for the
simplest realization of each type of double periodicity. Some degenerate bifur-
cations and their unfoldings are classified. Since the classification does not
rely on the details of the problem, this work is relevant to any bifurcation prob-
lem with the spatial symmetry of the plane when the instability has a preferred

wavelength which is neither zero nor infinity.
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Introduction

In recent years there has been an explosion of interest in nonlinear
dynamics. The modern theory of dynamical systems asks qualitative questions
about the behavior of nonlinear systems, where exact solutions are difficult to
find. One aspect of nonlinear dynamics is bifurcation theory, VAvhich is con-
cerned with the branching of solutions as a parameter is varied. In this disser-
tation bifurcation theory is used to investigate pattern selection between two-

and three-dimensional convection in a fluid layer heated from below.

In this introduction a short description of convection is given, followed by a
brief summary of previous work done in this field and the overall philosophy of
the bifurcation theory approach. Then the techniques used in the calculations

are described, followed by an outline of the dissertation.

When a fluid layer is heated from below, the fluid near the bottom expands
and becomes less dense than the fluid near the top. The warm fluid has a ten-
dency to rise, but viscosity (internal fluid friction) serves to damp any fluid
motion. These competing forces are measured by a non-dimensional parame-
ter, the Rayleigh number, which is proportional to the temperature difference
and inversely proportional to the viscosity. For small Rayleigh numbers, all
fluid motion decays due to viscosity, and the heat is transferred across the fluid
layer by molecular conduction. (The Rayleigh number is also inversely propor-
tional the the coeflicient of thermal conductivity, which determines the
effectiveness of conductive heat transport.) As the Rayleigh number is
increased there is a critical Rayleigh number beyond which the fluid motion is
not effectively damped by viscosity, and convection sets in. Conwvection is the

transport of heat through bulk fluid motion.

The simplest example of convection, in which only velocity and tempera-



ture are dynamical flelds, is called Rayleigh-Bénard convection. When a solute
is added and a solute gradient is maintained, there are buoyancy effects which
are analogous to those caused by thermal expansion. This is called thermoha-
line convection when the solute is salt, and the name doubly diffusive convec-
tion refers to the more general case. More complicated examples of convection
include magnetoconvection, when a magnetic field is present and the fluid is
electrically conducting, and convection in a rotating fluid layer. The symmetry
of Rayleigh-Bénard or doubly diffusive convection is different from that of con-
vection in a rotating fluid layer, because the rotation introduces a handedness
to the problem. When the imposed magnetic field is vertical, the critical modes
of magnetoconvection have the same symmetry as Rayleigh-Bénard convection

(Busse & Clever, 1982).

With the idealizations of an infinite plane layer and uniform heating from
below, the convection equations have the symmetry of all rotations and transla-
tions in the horizontal plane. This symmetry is necessarily broken when con-
vection occurs, because the fluid must flow up in some places and down in oth-
ers. The pattern of upward and downward fluid flow, as viewed from above, is
called the planform. The possible planforms include rolls, hexagons, rectan-
gles, and squares. In rolls, the fluid circulates in counter-rotating cylinders.
This is a two-dimensional pattern, because the velocity and temperature fields
do not change in the direction of the roll axis. The roll planform consists of
alternating stripes of upward and downward flow. Bénard (1901) observed hex-
agonal cells, with the flow up at the centers and down on the sides of a honey-
comb pattern. The three-dimensional patterns, rectangles, squares and hexa-
gons, are approximated (at small amplitude) by a linear superposition of rolls
oriented in different directions. Any superposition of rolls of the same

wavelength is treated equally by the linearized convection equations; therefore



nonlinear interactions are responsible for pattern selection.

Due to Bénard’'s observations, the early work on the nonlinear pattern
selection tried to understand why hexagons are the preferred planform. Two
papers which appeared almost simultaneously, Gor'kov (1958) and Malkus &
Veronis (1958), used rather different approaches toward this end. Gor’kov
tacitly assumed that the sclution has hexagonal symmetry, and then showed
that two patterns, hexagons and regular triangles, are possible. The paper by
Malkus & Veronis uses a more general approach to the problem. They consider
rolls, hexagons, squares and rectangles; however, they incorrectly assert that

two-dimensional roll solutions are not physically realizable.

Both papers, however, used the Boussinesq equations as their starting
point. It was later found (Block, 1956, Palm 1960, Segel & Stuart 1962, Busse
1962, Busse 1967) that deviations from the Boussinesq approximation were

responsible for the stability of the hexagons.

While Gor'kov (1958) made some fundamental mistakes, his paper is
insightful; he stresses the importance of the coupling of k vectors in the hor-
izontal plane, and the symmetry of the solutions. This paper has been largely
ignored in the West, where most workers follow Malkus & Veronis (1958). The
amplitude expansion of Malkus & Veronis finds the Rayleigh number as function
of the amplitude £ of the fluid motion:

R=R,+Re+Rye?+ - -, (1)
where R, is the critical Rayleigh number, at which linear theory predicts the
convective instability. This relation can be inverted to determine the amplitude

as a function of F—F,.

The symmetry implied by the Boussinesq approximation, which is discussed
at length here, forces all the odd coefficients, R,, F3, etc., to be zero. The sign

of Kz then determines whether the convection solutions exist supercritically
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(for R>R,) or subcritically (for R <R,). When three-dimensional patterns are
studied, each pattern has its own K. For all patterns but hexagons, the sym-
metry in the horizontal plane forces K,, K3, etc., to be zero even if the Bous-

sinesq approximation is not valid.

As mentioned above, Malkus & Veronis (1958) incorrectly asserted that the
roll solutions cannot be realized in practice. This is corrected by Schliiter,
Lortz, & Busse (1965), who extended the work of Malkus & Veronis. For
Rayleigh-Bénard convection in the Boussinesq approximation they found that
the only stable small amplitude solutions are the two-dimensional rolls. How-
ever, three-dimensional patterns, such as squares and hexagons, can be stable
given the general structure of the problems, even when the Boussinesq approxi-
mation is valid. Hence, a difficult calculation must be performed in order to
determine which patterns are stable. The calculation of the stable pattern has

been done in the following cases:

® Nagata & Thomas (1983) calculated K, for the three-dimensional patterns
in doubly diffusive convection. The techniques they use cannot establish the
stability of the patterns, although the stability can be inferred from a
knowledge of #5 for the various patterns. The calculation of the stable pattern
is done in this dissertation using different techniques. The details of the results
for R; are slightly different in the two calculations; unlike the calculations of
Nagata & Thomas (1983), those obtained here agree with Schliiter ef al. (1965)
in the limit of Rayleigh-Bénard convection. The result is that rolls are the only
stable small amplitude solutions in doubly diffusive convection. These calcula-
tions are done for Boussinesq convection with the simplest boundary condi-
tions: stress-free boundaries for the velocity field, and fixed temperature and

solute at the boundaries.

® Busse & Clever (1982) performed the calculation for convection in a verti-



cal magnetic field with stress-free boundaries, in the limit when the magnetic
diffusivity is much larger than the other diffusion coeflicients. They found that

rolls are the only stable small amplitude solution in this limiting case.

e For rotating convection with free boundaries and infinite Prandtl number,
Kiippers & Lortz (1969) calculated that rolls are stable when the rotation rate is
below a critical value. For larger rotation rates, the rolls are unstable to per-
turbations in the form of rolls oriented preferentially at 58° in the direction of
rotation. No stable steady state solution exists in this regime. Later, Kiippers
(1970) found numerically that the results are similar for the more realistic rigid
boundaries when the Prandtl number is of order one or larger. At small Prandtl
numbers the rolls can be subcritical {#3 <0), and the instability can be oscilla-
tory as well. The case of convection in a rotating fluid layer with free boun-
daries and finite Prandtl number is unusual; the rolls are unstable at any
nonzero rotation rate (Swift, in preparation). A roll is always unstable to other
rolls oriented at small enough angles in the direction of rotation. This is due to

a vertical vorticity mode which is forbidden with rigid boundary conditions.

® When the thermal conductivity of the boundaries is small, rolls are not
stable to three-dimensional disturbances. (The usual assumption is that the
tbermal conductivity of the boundaries is infinite.) Busse & Riahi (1980) showed
that for nearly insulating boundaries, squares (and many rectangles) are stable
relative to rolls. This is the first known example of a convection system with
vertical symmetry where three-dimensional patterns are preferred. Riahi
(1983) numerically computed the stability of rolls, squares, and hexagons for
convection in a porous layer with finite conducting boundaries. Hexagons are
never stable in this system, and squares are preferred when the conductivity is

small enough.

The bifurcation theory approach, pioneered by Joseph (1976) and Sat-



tinger (1979), attempts to derive as much information as possible from the sym-
metry of the problem, without reference to the particular equations. The ques-

tions of interest are:
® What are the possible patterns of convective motion?
® What are the stability properties of the solutions?
® What is the role of symmetry?

The result of the bifurcation analysis is a normal form. This is the simplest
system which contains all of the essential features of the original problem. The
normal form is an ordinary differential equation for the amplitudes of the criti-
cal rolls. These critical rolls have the preferred wavelength of the instability.
The three-dimensional patterns are linear superpositions of critical rolls in
different orientations. The normal forms contain coefficients which are not
determined by the symmetry, but depend on the specifics of the physical prob-

lem.

The results are summarized in the bifurcation diagrams. These diagrams
plot the heat transport of the solutions as a function of the Rayleigh number.
They show which solutions exist, whether they are subcritical or supercritical,
and their stability. The determination of which of the possible bifurcation
diagrams actually applies to a given physical situation requires a calculation of

the coeflicients in the normal form.

For technical reasons, the number of critical rolls described by the normal
form must be finite. This is accomplished by imposing double periodicity in the
horizontal plane. Doubly periodic solutions are represented by a Fourier series
instead of a Fourier integral. Each different example of double periodicity,
such as the square lattice and the hexagonal lattice, must be treated
separately. Only the doubly periodic solutions can be studied using this

approach, although others exist. Indeed, Busse (1978) showed that spatially



quasiperiodic solutions of the third order equations exist, although there are

technical difficulties at higher order.

The power of the bifurcation theory approach to convection is that the
results depend only on the symmetry of the problem. The same results apply to
Rayleigh-Bénard convection, doubly diffusive convection, and magnetoconvec-

tion.

Bifurcation theory gives a way to determine when the truncation of the
pertﬁrbation expansion is justified. The normal forms can be analyzed as
dynamical systems to test whether they are structurally stable, that is, whether
the addition of higher order terms will change their qualitative behavior. Tradi-
tionally, the expansions have been carried out to third order. Buzano & Golu-
bitsky (1983), and Golubitsky et al. (1984) found that fifth order terms are
necessary for convection on a hexagonal lattice. Even when rolls are stable,
these higher order terms are necessary from a mathematical point of view,

although they are not physically important.

Furthermore, bifurcation theory is a dynamical theory. The solution types
and their stability is described by the normal forms. Two separate calculations
are necessary with the umplitude expansion technique. As a dynamical theory,
the analyses of both steady state bifurcations and oscillatory bifurcations are

possible using the same techniques.

The classification of the possible bifurcations has intrinsic mathematical
interest, but from the point of view of a physicist, the calculation of the
coefficients is more important. Therefore a major portion of this dissertation is
devoted to an efficient calculation of the coefficients in doubly diffusive convec-

tion.

The calculational techniques used here are based on the center manifold

theorem, as is the bifurcation theory. The methods are simpler than those of



Malkus & Veronis (1958) or Schliiter et al. (1965), but they only work with
stress-free boundary conditions. With the more realistic boundary conditions,
however, numerical calculations are necessary. The simpler techniques are

therefore applicable whenever an analytic calculation can be done.
The main features of the calculational techniques are:

® The partial differential equations of convection are reduced to an infinite
set of ordinary differential equations. The degrees of freedom which contribute
to the normal form at a given order are determined, using symmetry considera-
tions, and the system is truncated. The analysis proceeds using the finite set of

ordinary differential equations.

» Complex notation is used throughout. Traditionally, the vertical eigen-
functions are written as sines and cosines (for the simplest boundary condi-

tions). The use of complex exponentials makes the calculations easier.

®» The equations of doubly diffusive convection are written so that the sym-
metry between heat and solute is explicit. This symmetry is exploited fully in

the calculations.

® The depth of the fluid is normalized to 77 rather than one. This has the

effect of eliminating bothersome factors of 7 in the calculations.

Outline of the Dissertation

Chapter One contains an introduction to the equations describing
Rayleigh-Bénard convection, doubly diffusive convection, and convection in a

rotating fluid layer. The symmetry of these equations is discussed.

Chapter Two begins with a review of bifurcation theory. Then, the normal
form for bifurcation in the plane with the symmetry of a square is derived as an
example of bifurcation with symmetry. It is then shown that this example

describes the possible steady state bifurcation behavior of convection on a



square or rhombic lattice. On the hexagonal lattice, the bifurcations are more
complicated; the behavior depends on whether or not the Boussinesq approxi-
mation is valid. These two cases are treated separately, and the connection

between themn is made.

In Chapter Three, Hopf bifurcations in convection are discussed. The two-
dimensional oscillatory solutions can be either traveling waves or standing
waves, and the normal form is derived which describes the selection between
these two patterns. This bifurcation equivalent to the original example of bifur-
cation in the plane with the symmetry of a square. Three-dimensional oscilla-
tory convection is sufficiently complicated that the normal forms have not yet
been determined, although the most general ordinary differential equations

with the correct symmetry are derived here.

Chapter Four contains the calculation, for doubly diffusive convection, of
the coeflficients in the normal forms derived in Chapter Two. A detailed discus-
sion of the symmetry of the infinite dimensional ordinary differential equations
of convection in a doubly periodic domain is included. The treatment of the
nonlinear terms is general enough to apply to magnetoconvection and convec-

tion in a rotating fluid layer.

In Chapter Five, the third order coeflicients of the normal forms for two-
dimensional, oscillatory, doubly diffusive convection are calculated. The third
order result is degenerate, so one of the degenerate bifurcations analyzed in

Chapter Two is relevent.

Finally, the Conclusion gives a summary of the present results and a pro-

gram for future research.
Three appendices follow. Appendix A lists the notation used throughout

the dissertation. Appendix B is a reprint of “Convection in a rotating fluid

layer"” (Swift, 1984). This paper describes the effect of non-Boussinesq terms
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added to the cubic truncation of the ordinary differential equations describing
rotating convection on the hexagonal lattice. Appendix C describes an efficient
technique for calculating the sub- or supercriticality of Hopf bifurcations with
three fold rotational symmetry. Such bifurcations occur at finite amplitude in

the Boussinesq and non-Boussinesq cases of rotating convection.
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Chapter One

The Convection Equations

In this chapter three examples of convection are introduced: Rayleigh-
Bénard convection, doubly diffusive convection, and convection in a rotating
fluid layer. The linear stability analysis of the conduction state is carried out in
the cases where the Boussinesq approximation holds, and stress free boundary
conditions are applied to the top and bottom plate. These idealizations, which
are discussed in detail, are not necessary for the normal form results of
Chapters Two and Three. However they make the powerful calculation tech-
niques of Chapter Four and Five possible. What goes wrong with other boundary
conditions is described, and the chapter ends with a discussion of the sym-
metries of the partial differential equations. The results of linear theory are

not new, but they are necessary for the remainder of the dissertation.

1.1. The Fundamental Equations

Consider a fluid layer of thickness d heated uniformly from below; the bot-
tom and top plates are held at fixed temperatures 73 and T, respectively. Let
x=(z,, 2o z3) = (2, Yy, 2) (1-1)
be the position, and
u=(u;, upus)=(u,v,w) (1-2)

be the velocity of the fluid.

The continuity equation, expressing the conservation of mass, is:
a . . -
(at+uV)p— pV-u, (1-3)

where p is the density of the fluid. The combination

0
—a-t—+uV (1-4)

is the convective derivative, or total time derivative for a comoving fluid
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element. For an incompressible fluid the equation of continuity reduces to
Vu=0. (1-5)

The conservation of momentum is:

3 3 S 9_2
Z_tu- = ——p — . (e, )= === (Vu), 1-
where p is the dynamic pressure, g is the acceleration of gravity, u is the

coefficient of viscosity, and

_ 1|0y Ouy
ei'j = 2[627] + a.’L‘i . (1 7)

The viscous stress term, containing u, is complicated; however for an
incompressible fluid with constant viscosity, equation (1-8) reduces to the

Navier-Stokes equation:

p( Eat_+ u-V) u=-Vp +pg+uviu. (1-8)

The conservation of energy is

2 V) (pc, T) =V-(kVT)—p V-u+é, (1-9)
at

where ¢, is the specific heat at constant volume, T is the temperature, and k is
the coeflicient of heat conduction. The rate at which energy is dissipated by

viscosity,
3 3
(I) = 2 z Zuei'jei_j (1‘10)
i=1j=1

can be neglected because it is extremely small; for water it is about d(cm)-1078
times the contribution of the convection of heat. (It is difficult to heat water by
stirring it.)

In order to close the system of equations {1-5, 1-8, 1-9) an equation of
state is needed, fixing p as a function of p and 7. The simplest equation of
state which includes buoyancy due to thermal expansion is:

p=pol1—a(T—Ty)] (1-11)

where a is the coeflicient of thermal expansion and T, is the temperature
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where p =pg. More general expressions for p are discussed in the next section.

The transport coefficients, x4 and k, depend on temperature in general. The
viscosity of fluids tends to decrease as temperature is increased (as with heated
syrup). Less familiar from everyday experience is the fact that the effect is
typically reversed in gases. The partial differential equations obtained with
temperature dependent u, ¢, and ¢, are contained in Busse’s Thesis (1962).
These equations are complicated, and for the most part this temperature
dependence will be neglected. In some cases (see Chapter Two), however, this

dependence introduces qualitative effects.

1.2. The Boussinesq Approximation

In many cases the variation in density across the layer is small; a is of the
order 1072 to 107* per °C for most liquids and gases (Chandrasekhar, 1961).
The variation of density can therefore be ignored except in the buoyancy term
(pg). If the variations of ¢,, k and u are small, these quantities can be assumed
constant. This is the Boussinesq approzimation. The Boussinesq approximation

also requires that the velocities are sufficiently subsonic.

For a deep fluid layer the assumption of equation {1-11) that the density is
independent of pressure breaks down. Spiegel & Veronis (1960) consider an
ideal gas and find that, if the depth of the layer is much less than any scale
height, the Boussinesq approximation is valid if ¢p replaces c, and the tempera-

ture gradient is replaced by its excess over the adiabatic.

The fluid equations, in the Boussinesq approximation, are:

9 =0, »p 2
—-tuV)u= -4+ L-g+yV-u, 1-12
(3t ) Po Pog ( )
(L vuv)r=kvir (1-13)
ot '
V-u=0, (1-14)

where
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v= p—E’— is the kinematic viscosity, and
0
(1-15)

K= ;{_ is the coeflicient of thermometric conductivity.
el 4
When there is no fluid motion, and the bottom and top boundaries are held

at fixed temperatures Ty and T, the temperature equation is V3T =0 which has

the solution:

T= To—%zz . where AT=Ty—T,>0. (1-18)
The density is therefore
p=po(l+a%zz). (1-17)

The Navier-Stokes equation (1-8) reduces to:
Y = (1+a L2 ) (~g2). (1-18)
Po d
and the pressure distribution is
AT
P =Po=pogz —gPo—592%. (1-19)

This is the conduction solution; it describes the transport of heat across the

layer by molecular conduction.

Let ¥ be the variation from the linear temperature profile:

T= TO—AT}Z +8 (1-20)

and let p be the variation of the pressure from the conduction solution. The

Boussinesq equations (1-12, 1-13) become:

( i,—+11-V7)u= —YE+m§1g'z‘+vV2u (1-21)
ot Po
B iuv)s—uz il = e ;
(6t+u\7)19 wZ ===V (1-22)
Vou=0. (1-23)

These equation can be non-dimensionalized. The dimensionless position

coordinate is chosen to be
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oI )
X=X (1-24)
so that the new boundaries are at z'=0 and 2'= 1.

There are two logical choices for the time scale: the thermal diffusion time

and the viscous diffusion time. The thermal diffusion time scale gives

2
TR
t=ta
ik
ﬂ (1-25)
ﬁl:ﬂﬁ
' a3
P'=p——F—.
PoTT KV

Dropping the primes, the non-dimensional equations in the thermal diffusion

scaling are

(Eat—-+u-V)u= o(~Vp + R9Z+V*u) ' (1-28)
D uv)e=usev? ;
(at+uV)19—uz+V13 (1-27)
V-u=0, (1-28)
where
3
k= ggAT:i_ is the Rayleigh number, and
VKT
(1-29)

g= %— is the Prandtl number,

The vertical viscous diffusion time scale gives:

t= le=at'
d
S Y
u =B—
, (1-30)
ﬁ":-’g—.
[0
II=B_'_
p s

Dropping the double primes, the viscous time scale equations are
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(aa—t+u-V)u= -Vp + R8%Z+V?u (1-31)

O uv)e= Ligssv? .
(at ruv)s L (uz+723) (1-32)
Vu=0. (1-33)

Other scalings of the equations are possible. The above scalings, based on
equation (1-24), are not standard since the depth of the layer is usually set to 1
rather than ©. Consequently, the Rayleigh number defined here is 1/ n* times
the usual Rayleigh number. The Rayleigh number defined in equation (1-29) is
denoted as R, by Chandrasekhar (1961). The advantage of this scaling is that
the eigenfunctions have a vertical dependence sin{z) rather than sin{mz). The
nonlinear calculations of Chapters Four and Five would have hundreds of fac-
tors of m strewn about with the usual sculing, but they would all cancel out in
the end. (I am indebted to John Salmon and Ken Rimey for pointing this out to

me.)

1.3. Boundary Conditions

The partial differential equations (1-26 ff) or (1-31 fI) must be supple-
mented by boundary conditions. Since the temperature is specified at the two
plates

¥4=0atz=0, . (1-34)
This assumes that the boundaries are perfectly conducting.
There are two types of boundary conditions used for the velocity field:
rigid and free. The more realistic rigid (or no slip) boundaries satisfy
u=0atz=0,m, (1-35)
which implies, using V-u=0, that
ow

'52—20 atz =0, m, (1-36)

where u=(u,v,w). (1-37)
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At (stress) free boundaries the tangential viscous stress vanishes:

du , dw dv , dw
e dl| = —_—t = t =0, . -
“[62+6 ] “[6z+6 ] Oatz=0,m (1-38)

In addition, the vertical velocity vanishes because the fluid cannot go through

the boundary:

w=0atz=0,m, (1-39)
which implies that
ow _ dw _ _ .
5z = 5y -0atz=0.m (1-40)

Substituting (1-40) into (1-38), and using the fact that the velocity field is
divergence free, one finds
du _ v _ 8w (1-41)

32 = az=a—zz—=0atz=0,1r.

Free boundaries are relevant when two fluids are in contact or when the
upper surface is air. Realistically, such boundaries can move, but such free
boundary problems are notoriously difficult. The non-deformable free boun-
daries used here greatly simplify the mathematical calculations, although they

are somewhat artificial.

The boundary conditions listed above are the same on the top and bottom
plate, but this is not necessary. In Bénard’s experiments, for example, there
were rigid boundaries on the bottom plate and free boundaries on the top plate.
When the boundary conditions are the same on the top and bottom, they are

said to be symmelric.

1.4. Doubly Diffusive Convection

There can be buoyancy in fluids due to other effects besides thermal
expansion. In the ocean, for instance, the concentration of salt is higher at the
surface due to the evaporation of fresh water. Salty water is denser than fresh

water, thus convection can be driven by concentration gradients in the absence
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of a temperature gradient. The equations for solutal convection are found by
analogy to (1-31)-(1-33). In place of aAT there is Ap =pyop —Poottom- In place of k&
there is kg, the coefficient of solute diffusion. In terms of the viscous time

scale, and using the Boussinesq approximation, the equations are:

( aa—t+u-V)u= —Vp +Rstz+72u _ (1-42)
ﬁ_ . - L 5 2 -
(at+uv)g- (v (1-43)
V-u=0, (1-44)
where
3
Rs= 'LAB—d—A‘— and g5 = ——. (1-45)

Here ¢ is the solute analog of ¥ (see equation (1-20)), and FRs and o are the

solute Rayleigh and Prandtl numbers. (og is also called the Schmidt number.)

Both temperature and solute gradients are present in doubly diffusive con-

vection. The basic equations are, with the viscous time scale:

( --aat—+u-V) u=-Vp +Rp9%Z+ RstZ+V?u (1-48)
8 1/ s o2
AT = . -47
( 37 +uV)19 o (u-Z+V%3) (1-47)
) 1, o
L oia- = —(u- 1-48
3% +uV)£ o (u-z+V2¢E) ( )
V-u=0. (1-49)

The generalization to more solutes is obvious. The symmetry between heat and
solute in these equations is delicate. Any departure from the Boussinesq

approximation is likely to break this symmetry.

The study of doubly diffusive convection is relatively recent. It began as
the ““oceanographic curiosity’” of Stommel et al.{1956), and the linear theory
was studied throughly by Baines & Gill (1969). The nonlinear aspects of doubly
diffusive convection have been the subject of many papers, including Veronis

(1959, 1966, 1968b), Huppert & Moore (1976), and Knobloch & Proctor (1981).
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The above scaling emphasizes the symmetry between temperature and

solute, but is nonstandard. Usually the solute Rayleigh number is defined as

~ _ 3
Bg= 9802 (1-50)
vicy

and the ratio 7=kgz/ k; is used rather than o,. Note that a negative value of F?JS
indicates a destabilizing solute gradient. Pearlstein (1981) uses the symmetric

definitions given here in equation (1-45).

The standard boundary conditions are to specify the concentration at the

top and bottom:
¢§=0atz=0,m, (1-51)
although these are hard to realize in practice. The formal symmetry between
heat and solute requires that the boundary conditions for ¢ and ¥ are the same.
The solute boundary conditions used here (1-51) are the same as the tempera-

ture boundary conditions for perfectly conducting boundaries (1-34).

1.5. Convection in a Rotating Fluid Layer

Consider a fluid layer rotating at a constant rate g, (the subscript
stands for “dimensional”.) The dimensional equation of motion {(1-21) must be

modified to include the centrifugal and Coriolis forces:
(aa—t+u-V)u= —_p—VP—+ouﬁg 'i+p,V2u+V(é—| Qgim XX| 2)+2uXQdim . (1-52)
0

where the origin of the coordinate system is on the rotation axis. The pressure
increases radially to balance the centrifugal force. It is possible to incorporate
the centrifugal force into a modified pressure:

p'=p—1po|Qxx|?. (1-53)
Thus, the centrifugal force has no significance, only the Coriolis force is impor-
tant. As a consequence, the center of rotation is not singled out, and the equa-
tions are symmetric with respect to translations in the horizontal plane. Of

course, the pressure does affect the fluid properties far away from the center
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of rotation, thus violating the translational symmetry.

The non-dimensional rotation vector is
= dml (1-54)
With the thermal time scaling, the equation of motion (1-52) becomes

(:—t+u-V)u=a(—Vp + R8Z+ux(+Viu). (1-55)

When the viscous time scale is used, the Prandtl number ¢ is absent in the

equation of motion, but the non-dimensional (2 is defined the same way.

1.6. The Velocity Field Expansion

While the velocity field has three scalar components, only two are indepen-
dent because Vu=0. Since the vertical direction is singled out, scalar fields
related to the vertical velocity and vertical vorticity will be used. The vertical
velocity has already been defined:

w=uZ. (1-586)
The vorticity is the curl of the velocity,

w=Vxu, (1-57)
and the vertical vorticity is

(=wzZ. , (1-58)
A general divergence free vector field can be written as

u(xt)= Y [d%k[wen(t) Wan+tun () Zan | (1-59)

n=-ca

where wy, and {x, are time-dependent amplitudes of the vertical velocity
modes and vertical vorticity modes, respectively defined as:

Win = (—kn + | k|?3)gilkxtnz) (1-80)

Zy 5 = (Zxk)etxinz) (1-81)

where k is a wave vector in the horizontal plane:
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k%=0. (1-62)
Since u is real,
Win =Wogn» a0d $n =g p, (1-63)
where the overbar denotes complex conjugation.

In the literature the velocity field decomposition is often written as
u=Vx(y2)+IxVx(pz). {1-64)

The correspondence between the two representations, (1-59) and (1-64) is

y=i 3 [dPkéy,eilknma), (1-65)
n=-oo

p=i ¥ [dPkwy,eilkxtna), (1-66)
n=-oo

In terms of the vertical velocity and vertical vorticity fields, the boundary

conditions on the velocity field are

2
w = 9—%—= 9 _ g atatree boundary, and (1-87)
0z 0z
w = %—1:= ¢ =0 at a rigid boundary. (1-68)

The boundary conditions must be satisfied by each k mode separately. For

free boundaries at top and bottom,

w=0atz=0,nm implies ), wrgn= ), (-1)"wy,=0 (1-69)
n=-—o nN=—
0% =0 at z =0, 7 implies i’nzw = i (-1)* n? =0 (1-70)
322 =u, 7 P kn = n"Wgn =
-gg—=0 at z =0, m implies ), nég, = ), (~1)" n éxp =0. (1-71)

For these symmetric boundary conditions the even and odd terms in the sum

can be separated:

Y Wikn= ), Win=0 (1-72)

guen n odd n
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anwkn=2n2wkn=0 {1-73)
sven odd
Y niun=1nlkn =0. (1-74)
aven odd

For rigid boundaries at top and bottom the vertical velocity condition is the

same, but the other two boundary conditions are:

%’é’—:()atz:o,n implies 3 nwg,= Y nawg, =0 (1-75)
even n oddn
¢=0atz=0,n implies ), ¢gp = Y ¢xn =0. (1-78)
even odd

For free boundaries the boundary conditions can be satisfied by the
infinite set of relations:

Wyn = —Wg (1-77)

$xn = Cn - (1-78)

For rigid boundaries the situation is more complicated. No single pair of

+n terms can satisfy both of the vertical velocity conditions. Furthermore, an

initial condition which satisfies the boundary conditions does not automatically

satisfy the boundary conditions at later times. (See section 1.8 on Lagrange

rmultipliers.) The Fourier expansion technique does not work very well for rigid

boundaries.

1.7. Linear Stability Theory

If the temperature difference, i.e. the Rayleigh number, is large enough,
the motionless conduction state becomes unstable to overturning fluid motion.
In this section, the stability of the conduction solution is described. The ques-
tion is, will small perturbations grow or decay? Because the conduction solution
satisfies

u=4=£=0, (1-79)
its stability to infinitesimal perturbations can be computed by neglecting the

nonlinear terms. The linear stability of finite amplitude solutions is more
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difficult to compute because the solutions are not known exactly.

The linearized equations can be represented by a matrix L of differential

operators,
d u u
Et— d(=L{d]. (1-80)
3 ¢

The goal of the linear analysis is to find eigenfunctions and eigenvalues of these
linearized equations. The eigenfunctions and corresponding eigenvalues A; are
defined by

u(x) u(x)
Lla(n)| =xle@)| . (1-81)
¢(x) )N £(x) Ay

where the eigenfunctions must satisfy the boundary conditions.

The general solution to the linearized equations is

u(x, t) u(x)
¥z )| = Neje [9(x)| | (1-82)
g(x.t)) 7 £(x) JNy

where the coefficients ¢; are arbitrary. If any of the eigenvalues has positive
real part, then the conduction solution is unstable. because some perturba-
tions will grow exponentially, until the nonlinear terms are important. On the
other hand, the conduction solution is stable if all of the eigenvalues have

negative real part, that is
Re(A;) <0, for all j. (1-83)
Because the coefficients of the partial differential equation are indepen-
dent of the horizontal coordinates, the eigenfunctions have an exponential spa-

tial dependence:

u(x) u(z)
J(x)| =|8(z)| e'*x, (1-84)
e(=))ny E(2))N

The eigenvalue depends on R, as well as |k|?, where k is the wave vector in the

horizontal plane (k-Z = 0).
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When the Boussinesq approximation is valid, the equations for the vertical
eigenfunctions also have constant coefficients. In this case the vertical eigen-
functions are sums of exponential functions. With rigid boundaries, the vertical
eigenfunctions are sums of hyperbolic and sinusoidal functions {see Chan-
drasekhar, 1961), and their Fourier expansion includes an infinite number of

terms.

On the other hand, with free boundaries, the eigenfunctions are of the

form
sin(z Je*®xx= %{[ek'n —ek_n) (1-85)
for w, ¥, and £, and
cos{z )eikx= %[ekn+eh~n] (1-88)
for ¢, where
ey n =e (kX2 (1-87)

Because differentiation of ey, only introduces a multiplicative constant,
the linear operator L is block diagonal in the basis where the functions have
spatial dependence ey,. The operator, restricted to these functions, is called
Lixn. Thelinear analysis can therefore be done separately for each subspace of
functions of the form

U=Uy, =Wygp Wk.n +<‘k.n Zl:‘n
'61="8k,,elm (1-88)

§=fxnlrn
where the complex amplitudes wy,, ¢xn: Vgn, and fx, are time-dependent.

While these functions (1-88) do not satisfy the boundary conditions, the boun-

dary conditions are satisfied if the following constraints hold:
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Wygn = ~Wg-n

('k.n ={k-n
Bxn = =% n (1-89)
fxn = —fx-n -

With free boundaries, only the ey, terms need be considered, since these con-
straints are automatically preserved by the dynamics. With rigid boundaries,
Lagrange multipliers must be introduced to ensure that the boundary condi-
tions satisfied. This introduces a coupling between the different ey, modes,
and the operator Lis not separable into a direct sum of Ly, operators (see sec-

tion 1.8).

The pressure fileld has not been included in (1-88) since it can be elim-
inated by taking repeated curls of the velocity equation and dotting with Z.
This has the effect of separating the vertical velocity and vertical vorticity
amplitudes. Using this technique, Bénard convection is described by four

scalar equations:

E-Vx[( D-+uV)ul =2:Vx[ o(~Vp + RO2+V0)] (1-90)

Z-VXVx [( a—+u-v)u = z~VxVx[a(—Vp + ROZ+V u)] (1-91)
0 (.5 T2

(a—t+u-v)19_ (w3 +V28) (1-92)

Vou=0. (1-93)

The linearized equations are easily written in terms of the time-dependent
amplitudes. The pure exponential notation simplifies the evaluation of the
curls. Each “V" can be replaced by the wvectaor, i(k+nZ). The following useful
relations are derived using only vector identities:

ZVxuy, =1 k|, (1-94)
ZVXVXUy, = | k|%(| k|2+n2)wy, (1-95)

VRern = —(|k|?+n)ey, (1-986)
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Viug, = —(lk|?+n?)uy, (1-97)
%Vx(ex,2) =0 (1-98)
Z-VxVx(ey,2) = | k|? (1-99)
Uprn Z= | K|Pwgn (1-100)
V-ug, =0. (1-101)

The first two equations imply that equation (1-91) gives the time derivative of
the vertical velocity amplitude wy,, and equation (1-90) gives the time deriva-
tive of the vertical vorticity amplitude ¢y,. For example, the linear equation
for the time derivative of wy, is found by evaluating equation (1-91) using the

identities above:
2
2 1k K|+ n®)win) = 0R K| *xn —0 | kI (| k240D wn ., (1-102)
which reduces to
o

a =g _ 2.2 _
7 Win ([k]2+'n§_)—,ﬁk" o( | k|*+n®)wy, . (1-103)

1.7.1. Rayleigh-Bénard convection

For Bénard convection with the thermal time scale, the linear equations

are
R
win] |-o(|KI24n?) 0 R fw,
4 (1k[2+n?) || "
57| $xn | = 0 -o(|k|?+n?) 0 lkn |- (1-104)
B ME 0 ~(| k|24 2) | PEn

The vertical vorticity amplitude is not coupled to the other two amplitudes,

and it decays away as
ban ~ e OUEEREE (1-105)
The vertical vorticity is not important for the linear analysis of Bénard ccnvee-
tion at any nonzero Prandt! number. However, equation {1-105) indicates that

the limit o » 0 is singular.
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For rigid boundaries, the boundary condition (1-68) requires that ¢yo=0.
The n =0 mode of vertical vorticity is allowed with free boundaries, and the
decay rate can be arbitrarily small as |k|?-0. The limiting case is a uniform
horizontal velocity field which is not damped at all; these modes must be elim-

inated by appropriately choosing the coordinate system.

A roll is defined as the velocity and temperature field corresponding to an

eigenvector of the matrix

~o(|k|?+n?) am%%n—z)—
Lin = . (1-106)
k| ~([k|*+n?)

The growth rate of the roll solutions is given by the eigenvalues A of the matrix.

These eigenvalues are solutions of the characteristic equation,

Det (Lg,—AI)=0. (1-107)
Therefore
2
NM+(1+0)( k| R+n®)A+o|( | k|Z+n? e___|k|*R _ =0. 1-108
R I (LR e e (1-108)

As R is varied, the instability of the conduction solution is due to an eigenvalue
passing through zero. When A =0, the characteristic equation reduces to
Det(Ly,) =0, which implies that

= (k[F+n®)” (1-109)

| k|?

For fixed n, the minimum Rayleigh number occurs when

Fﬁfl_z‘_)_zo' (1-110)
which implies that
|k|?=in?. (1-111)
- The minimum Rayleigh number, as a function of n, is
Rpin{n)= 547_n4. (1-112)

As the Rayleigh number is increased, the instability occurs first for n = 1. The
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critical Rayleigh number is therefore R, = -":—Z-. and the critical wavenumber is

lk|? =kl= These results were first found by Rayleigh (1916); Chan-

1
.2 )
drasekhar (1961) gives a complete treatment of the linear problem.

R

- > |k|?
k2
Fig. 1-1. The neutral curve for Bénard convection {equation (1-109), with n = 1).
According to linear theory, rolls grow exponentially with time above the neutral
curve and decay exponentially below it. As the Rayleigh number is increased,
the instability first occurs at R = R, = %7-, with a wavelength of |k|%2 =k, = >

The sum of the two eigenvalues of {(1-108) is —(1+0)(]k|*+n?), which is
always negative. Therefore it is impossible to have A= +iw, with ® real, in
Bénard convection. In other convection examples it is possible for the conduc-
tion solution to go unstable when a complex conjugate pair of eigenvalues of
Ly, crosses into the right half plane. This is called overstability in the fluid
mechanics literature, a term which is descriptive of the growing oscillations of
the linearized equations. When the nonlinear terms are included, this
phenomenon is called Hopf bifurcation in the Mathematics literature. The non-
linear terms damp the exponential growth, and lead to finite amplitude periodic
solutions. The steady state bifurcation which typically occurs in convection
when an eigenvalue crosses through zero is called a pitchfork bifurcation.

These bifurcations are discussed in section 2.1.

1.7.2. Doubly diffusive convection

For doubly diffusive convection the vertical vorticity mode decays away, as

it does in Bénard convection. The linear equations for the other three
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amplitudes, using the viscous time scale, are:

{
( 1 2 2 Kr Rs l' )
w — k + 1w
i I A T v B (T M
a =1 Aoz 1 ikizen? .
37| kn [ = o | K| Ur(lkf +n*) 0 Vgn |- (1-113)
1 2 1 2,2
= 0 -2 +
| éxn | | o | k| Us(lkl n )‘ 3

The characteristic equation is

1+ L.l__:!‘_..
Or

0=A%+A%(| k|?2+n?) -
S

4
+A (|k|2+'n2)2[—1—+ - L4

— 1-114
oy 05 0705) (|k|?+n?) ( )

Rr R
2T _5._]
Or Os

[l 2en (R ) K],

At the onset of steady convection A =0; therefore

(Rr+Rs) = Q—lg}—%;”—zﬁ. (1-115)

By analogy to the Bénard case the critical wavenumber and Rayleigh number
are:

k2= + . (Rr+Rs); = 2{-. (1-1186)

The onset of oscillatory convection occurs when A= tiw. The real and

imaginary parts of equation (1-114) give:

0:—wz(]k|2+n2)[1+—1—+—1—]+—1——[(|klz+n2)a~(1~?¢+}i’s)lklg] (1-117)
2 Ry  Fs

0= —c?+{(| k| %+ ZEIL SRS T | LSS (1-118

i n)lar+gs+gras (Ik|2+n?) (o7 05 ( )

Eliminating w? these equations reduce to

2 2 2, 2yd
Os o7 _ (|k|*+n®)",

4 + R = + . 1-119

T(1+os) S(1+0T) lk|? (o5 +07) ( )

The right hand side has a minimum at |k|?= #»n = 1. The condition for oversta-

bility is therefore



30

2 2
Os” _, or"___ 27 -
RT(1+US)'H%(1+UT)_ ~~(os+0y). (1-120)

2

In addition, w* must be positive. From equation (1-117), this implies

R+ Fs < %7— (1"121)

There are four parameters needed to describe doubly diffusive convection.
At a Hopf bifurcation, only three are needed to specify the system. It is con-
venient in the calculations to use ? as the third parameter, along with
Rs and Ky. The Rayleigh numbers at the Hopf bifurcation can be recovered as

follows:

27 (+og) (0 4 2 2
Ry = 2 (0a=0,) (1+§w Op )
K =2_?__§.1_t_gl2_

ST 4 (g,—0g)

(1-122)
(1+—§-wzasz) .

The curves of the steady and oscillatory instability meet in a codimension-two

bifurcation when ® =0, which is at

27 (1+og) 27 (1+0,)
Rp==—->——5_  and Rg=--"-r—-"I
T="4 (og—0,) ST (o0p—0g)

(1-123)
For salt water o5~700 and 0,~7. In the limit that o3>0, the overstability line
is

Ky =~—, Rg<O0. ' (1-124)
Note that overstability can occur even when the fluid is denser on the bottom
(Rs+ Ry <0). Fig. 1-2 shows the stability regions for doubly diffusive convection

at various fixed parameter values. The first treatment of the linear theory of

doubly diffusive convection is found in Baines & Gill (1969).
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’
'I
- d
RN A * M4 Hopf
itchfork .
Hopf P pitchfork
\> * >
Ry Fr
. Hopf
\ pitchfork P pitchfork

Fig. 1-2. The lines of neutral stability in the Rg-Ry (solutal Rayleigh number -
Thermal Rayleigh number) plane, for fixed values of the Prandtl numbers. The
pitchfork bifurcation occurs at As+Hp = %7-. where one of the eigenvalues of Ly,

(with |Kk|%= %— n = 1) passes through zero. The condition for Hopf bifurcation,

where a complex conjugate pair of eigenvalues of Ly, crosses into the right
half plane (with |k|?= s, n=1as before), is given by equations (1-120) and (1-
121). The solid line indicates pitchfork bifurcation, and the dotted line indi-
cates Hopf bifurcation. In a typical experiment, Kg is held constant as Ay is in-
creased. This experiment is indicated by arrows in the figures, although other
paths through Rs-Fy space are possible. Fig. (b) corresponds to the same
Prandtl numbers ag fig. (a), but in fig. (b) the standard definition of the solutal
Rayleigh number (Rg) is used (see equation {1-50).) Fig. (d) shows the limiting
case of the Prandtl numbers appropriate for salt water.
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1.7.3. Convection in a rotating Auid layer

The Coriolis force terms needed for convection in a rotating layer can be
calculated for the single ukn.velocity mode of equation (1-88) using vector
identities. They are

Z-Vx(ug, xQ) =i(n | k|20-2+ | k| Q- K)wy, (1-125)
2VXVx (g, X0Q) = —(n K| 205+ | k| 20-K) ¢xn - (1-126)
The viscous time scale is somewhat simpler since there are fewer gs in the

linear equations:

—(1k|2+n? —(nQ-Z+Qk) R
d e (lFen) (1k[?+n?)  (|k|%+n?) ||“%"
7| Sen | 5| 22+ 0k —([k[%+n?) 0 Cun |- (1-127)

1x|® 0 =(X[?+n?)
a a

Vkn

kn

When the velocity is in the plane perpendicular to Q the Coriolis force, as
well as the centrifugal force, is balanced by the pressure gradient. Therefore,

the component of Q perpendicular to both Z and k does not have any effect.

It is useful to think of convection in a rotating layer as an approximation
to convection in a rotating spherical shell heated from the inside. At the north
pole () points along the Z axis, while at the equator {2 is in the horizontal plane.
When k points East-West the linear problem is identical to convection at the

North pole with a reduced rotation rate.

Consider first the case where the rotation vector is vertical. (The compli-
cations which arise when 2-k#0 are discussed in the next section.) The charac-
teristic equation is

0=A"+A%(| k|*+n?)(2+ 1)

nT __ R|k|?
|k|*+n?)  (|k[?+n?)

M2 (14 2) v
+ [ (k| 2+n2)*+n2T-R K| 2],

where T=]0|?=(Q-Z)? is the Taylor number. In dimensional units, the Taylor
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number is
Te —m T (1-129)

The reader is warned that the standard definition of the Taylor number does
not include the factor of m%. The scaling of equation (1-24) is responsible for
the difference. Chandrasekhar (1961) defines the right hand side of {1-129) to
be T,.

The conduction solution is unstable to exponentially growing rolls when R

exceeds

R= ﬁ;[(]k]zmz)smaﬂ. (1-130)

The minimum Rayleigh number occurs when |k|? satisfies the cubic
2()k|?)°+3(|k|?)°P-nb=n?T, (1-131)
There is an analytic expression for the critical wavenumber as a function of T,

but it is rather lengthy. The wavenumber monotonically increases with 7, so
the critical wavelength goes to zero as T - oo.
The minimum Rayleigh number corresponds to n =1, so for fixed 7 the
critical wavenumber is given by the solution of the cubic equation:
T =(1+k2)%(2k,2-1). (1-132)
The critical Rayleigh number for this Taylor number is
R, =3(1+k2)% (1-133)

Overstability occurs when

2 2
0 = —o?+(| k| %+n?)® Eipp——nT = £ k| 3 (1-134)
a (Ik[#+n?)"  o(|k|?+n?)
and
0=—w2(|k|2+n2)(2+:17-)+%[(|k|2+n2)3+n2T—R|k|2]. (1-135)

Eliminating w®, this gives
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2
k|2+n2)te T __p27|. 1-138
(il 2en2)s n (1-136)

1
F=2(1+0) Tel?
The minimum Rayleigh number, for fixed Taylor number, occurs when n =1 and
| k|? satisfies

o?

TlTE)?T=(1+kc2)z(2kc2—l)- (1-137)

The corresponding Rayleigh number for overstability is
R, =6(1+0)(1+k.?)°, (1-138)
provided w?>0 (so that w is real). A necessary condition for overstability is

o<l

The neutral curves, which plot R vs. |k|? must be drawn for fixed T and o.
There are two neutral curves (assuming n=1): one for stationary convection
(1-130), and one for oscillatory convection (1-136). Unlike the doubly diffusive
case, the direct and oscillatory instabilities have different preferred
wavelengths in rotating convection. Fig. 1-3(a) shows how the T-¢ plane is
divided into two regions, depending on whether the instability to stationary
convection or to oscillatory convection occurs first as the Rayleigh number is

increased.

The T-o plane is separated into many regions where the neutral curves are
qualitatively different. Only the most important division is shown in fig. 1-3(a).
Within regions | and 1l there are several possible neutral curves, some of which
are shown in figs. 1-3(b) through (e). The linear theory of rotating convection
is sufficiently complicated that it is not possible to give a full treatment here.

See Chandrasekhar (1961) or Weiss (1964) for details.
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Fig. 1-3. In fig. (a), the o-T (Prandtl number - Taylor number) plane is divided
into two regions. In region I, the pitchfork bifurcation occurs before the Hopf
bifurcation when the Rayleigh number R is increased for fixed T and ¢. In re-
gion 1II, the Hopf bifurcation occurs first. For the parameter values on the
boundary between regions | and I there is a codimension-two bifurcation. The
equation describing this boundary is given in the appendix of Pearlstein (1981).
In figs. (b) and (c), typical neutral curves for region 1 are shown. If figs. (d) and
(e), typical neutral curves for region Il are shown. The solid line indicates the
pitechfork bifurcation {equation (1-130)), and the dotted line indicates the Hopf
bifurcation {(equation (1-138)).
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1.8. Lagrange Multipliers
This section describes the modifications of the Fourier amplitude tech-
nique which are needed when the boundary conditions are not chosen

‘“‘correctly”.

With rigid boundaries, the linear equations (1-104) for Bénard convection
do not preserve the boundary conditions. Given an initial condition satisfying

the rigid boundary conditions, if R is slightly greater than 27:- all the modes

except n = £1 will decay away. This asymptotic state certainly does not satisfy

the rigid boundary conditions.

A similar problem occurs when k<) is not zero in rotating convection. The
linear equations (1-127) do not preserve the boundary conditions. Suppose the
initial condition has only four modes, {(+k, +n), related by the reality condi-

tions (1-63) and the symmetries which satisfy the boundary conditions

WyptWy-n = 0
{kn—S¢k-n =0 (1-139)
'ﬂk:n +19k__n =0.

If these boundary conditions hold at £ =0, the linear equations reduce to

-k
gt" (wk,n +wk_—n ) = (_rk_lg__*__;zé')_(ék.n + fkrn )
g{(ékn —(k,—n) = Q'k(wkn _wk.—n) (1-140)

2 (gn +90) =0,
and the boundary conditions are immediately violated unless u=0. The non-
linear terms cannot preserve the boundary conditions since the argument is

valid for arbitrarily small amplitudes.

Note that when Q is vertical the boundary conditions are automatically
preserved by the equations of motion, due to the n in the off diagonal terms
linking wy, and ¢éx, in equation {1-127).

How can the equations fail to preserve the boundary conditions? The reso-
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lution of the paradox is that, under certain conditions, the modal equations (1-
104, 1-113, and 1-127) must be modified in order to preserve the boundary con-
ditions. The boundary conditions are a constraint capable of exerting a force,
similar to a bead constrained to a wire. There is a Lagrange multiplier for each
of the constraints. Let the constraints be numbered 1 through 8: Equation (1-
72) gives

Ci= ), Wga=0. (1-141)

odd {even) n

For free boundaries constraints 3 through 6 are derived from equations (1-73)

and (1-74):
Ca= 2, nfwg,=0 (1-142)
odd {even) n
Cs)= 2. m¢ka=0. (1-143)

odd (sven) n

For rigid boundaries these constraints are [see (1-75) and (1-78)]:

Cs)= 9, MNwga=0 (1-144)
odd (even) n
Cs@= 2 ¢un=0. (1-145)

odd (even) n

The constraints from the temperature boundary condition (1-34) are:

C7 (e)z 2 ﬂk_n =0. (1‘146)

odd (even) n

The linear equations must be modified to include an arbitrarily strong ‘‘force”

in the directions perpendicular to the constraints:

. ac ac
..d_ - _q_ | —_— __l___ PR R— 4
at kn [dt KR | matriz ! Bwy, M Bwy
ocC ocC
d =L - S . g -
dt <‘k.n - [dt (k.n]ma‘ . A5 aé‘kn g aé‘kn (1 147)

4. _fa L 8C, . 8C
2t Pk = E;ﬂkn]matm A7 59xn Ag T

where the matrix subscript refers to equation {1-104) or (1-127). This intro-
duces eight new variables {A; through Ag). There are also eight new equations

which guarantee that the boundary conditions are preserved:
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€,=0, -, £ cg=0. (1-148)
Since the boundary conditions are the same on top and bottom, the even and
odd problems separate. For the even solutions only amplitudes with n even are

non-zero, and all the C,, where n is odd, are zero. The odd solutions are simi-

larly constructed.

With stress free, perfectly conducting boundaries, all of the Lagrange mul-
tipliers are zero; this is why these boundary conditions are so simple. With rigid
boundaries, Ag and A4 are nonzero. When there are nonzero Lagrange rnulti-
pliers, it is impractical to carry out the procedure described here. The purpose
of this section is to give a novel view of what goes wrong when rigid boundary

conditions are imposed.

It appears that no one has analytically solved the linear problem with free
boundaries when Q-k# 0. Hathaway et al. (1979) do the linear theory when the
diffusion constants are set to zero. The only boundary condition that they
impose is w =0. Hathaway et al. (1980) numerically solve the linear problemn
with diffusion, but they impose rigid boundary conditions. In both cases, the
rolls where k is pointing East-West (where k-Q2=0) have the lowest critical Ray-

leigh number, because the interaction with the rotation suppresses convection.

1.9. Symmetries

In the next chapter, the possible bifurcation structure of the convection
equations is found, using only their symmetries and the results of linear theory.
Therefore it is important to understand the symmetries of these equations.

In an infinite plane layer the equations have the symmetry of the Euclidean
group: all rotations and translations in the plane. The symmetry acts on the

coordinate x by



39

x- X =Rx+d, (1-149)
where d is a vector in the horizontal plane,
d-z=0, (1-150)

and Ris an orthogonal matrix of the form

cosy sing O)
R=|-sing cosp 0], (1-151)
0 0 1
or
—cosy sing 0]
R=| sing cosp 0. (1-152)
0 o 1

The matrices of the form (1-151) represent proper (orientation preserving)
rotations, and those of the form (1-152) represent improper rotations, or
reflections. For convection in a rotating fluid layer, only proper rotations are

symmetries.

In conjunction with (1-149), the velacity field is transformed by the rota-

tions,
u-u =Ru, (1-153)

and the temperature field, solute field, and pressure field are unchanged,

Vo =1
§-¢'=¢ (1-154)
p->p'=p.

The equations are symmelric under a transformation if they are identical when

written in terms of the primed variables; for instance equations (1-28)-(1-28)

become
a vl (- oot [T 1Y R !
FE UV )u= o{=V'p '+ R9'2+(V')2u') (1-155)
( ;%-+u’-V’)19' =u'Z' +(V')% (1-1586)
V-u'=0, (1-157)

where the-fields now depend on the transformed variables,



40

=9 (x,t). (1-158)

(The symmetries discussed here do not involve the time coordinate.)

When the Boussinesq approximation is valid and the boundary conditions
are symmetric, the system has another symmetry, called the FBoussinesq sym-
metry, The Boussinesq symmetry is a reflection in the horizontal midplane cou-
pled with a reversal of the temperature and solute perturbations. The transfor-

mation of the coordinates is

I X
Y-y (1-159)
Z2->N—2.

The dependent variables transform as follows:

u- Ru
4 -» -4
£ —¢ (1-160)
Y ady
where

1 0 O

R=]0 1 0}. (1-161)
0 0 -1

In terms of the new variables, the equations for Bénard convection (1-26)-(1-
28), doubly diffusive convection (1-46)-(1-49), and rotating convection when the
rotation vector is vertical (1-55) and (1-27)-(1-28), remain unchanged. The full
problem is specified by the equations and the boundary conditions. In addition
the to the above transformations, the boundary conditions on the top and bot-
tom are interchanged. The problem has the Boussinesq symmetry if, in addition
to the validity of the Boussinesq approximation, the boundary conditions are
the same on the top and bottom plates, and the average of the temperature of

the top and bottom plates does not change with time (Krishnamurti, 1968).

Note that the sign of the z derivative is changed by the transformation (1-

159),



41

-0

-~ __Q_ A.'= v _
ZV= Fye »ZV 35 (1-162)

but the vertical unit vector Z is unchanged. This is because 2 is an indepen-
dent variable in the problem, while Z (g Z) is a parameter which defines the sys-

tem.

In addition to these symmetries, there are pseudo-symmetries. In pseudo-
symmetries, the parameters of the problem can be transformed, whereas with
true symmetries, only the dependent and independent variables are
transformed. In doubly diffusive convection (1-46)-(1-49), there is the pseudo-

symmetry between heat and solute:

X X
u-u
9§
(-9
[R7 - Rs]
[£s - Rr]
[o7 - o5]
o5 0.].

(1-183)

The transformation of the parameters is enclosed in square brackets to distin-
guish it from a transformation of the variables. This pseudo-symmetry will

often by abbreviated by [T« S].

In rotating convection, when the rotation vector is vertical, there is also a

pseudo-symmetry of reflections, coupled with a reversal of the sign of {):

x> R-x

u-Ru

d-»1 (1-164)
p-p

(n--0aj,

where R is of the form (1-152). This pseudo-symmetry corresponds to changing
from a right handed to a left handed coordinate system.
Note that the pseudo-symmetries can be considered to be true symmetries,

by artificially including the parameters as new dependent variables. For



42

instance, in rotating convection ! can be considered a dependent variable
satisfying

o0

—=0. -185
=0 (1-185)
The value of {) is imposed as the initial condition for the new dependent vari-
able. In this way, the transformation (1-164) becomes a symmetry, rather than

a pseudo-symmetry.

The practical differences between the two types of symmetry are seen in
the following chapters. Pseudo-symmetries do not directly aflect the normal
form results of Chapters Two and Three; however, they simplify the calculations
of the coefficients of the normal forms and greatly influence the structure of

the problem.
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Chapter Two

Bifurcation Theory and Normal Forms

This chapter describes the bifurcations which can occur in convection
when the horizontal planforms are doubly periodic. For the results of this
chapter to hold, all that is required of a physical problem is that it be sym-
metric with respect to rigid motions in a two-dimensional plane, that the linear
stability of the conduction solution has a real eigenvalue go through zero, and
that the wavelength of the most unstable disturbance is neither zero nor
infinity. The normal forms relevant to Hopf bifurcations, where the instability is
due to a complex conjugate pair of eigenvalues crossing into the right half

plane, are discussed in the next chapter.

The results of this chapter are based on the center manifold theorem. This
theorem allows the partial differential equations of convection to be reduced, in
certain cases, to a few ordinary differential equations. The chapter starts with
a review of bifurcation theory, and the simplest bifurcations are introduced. An

understanding of these simple bifurcations is a prerequisite for what follows.

In section 2.3, an example of bifurcation with symmetry is discussed. This
example displays the essential behavior of many of the bifurcations which
occur in convection. Then, the least degenerate (simplest) bifurcations of con-
vection on a square or rhombic lattice are classified, using the correspondence

to the example studied earlier.

Convection on a hexagonal lattice must be treated separately from convec-
tion on the other lattices. The Boussinesq approximation plays an important
role in pattern selection on a hexagonal lattice. Four different normal forms
are appropriate, depending on the degree to which the Boussinesq symmetry is

valid.
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The chapter ends with a discussion of the lattice function, which displays

the results of all the lattices.

An intuitive, physical approach to the theory is used whenever possible,

rather than sophisticated mathematics.

2.1. A Quick Review of Bifurcation Theory

Bifurcation theory is the study of the branching of solutions of ordinary
and partial differential equations. This branching is always accompanied by a
change in the stability of the solutions. The stability properties of a stationary
solution are found by linearizing the equations about the fixed point. This
linearization is a linear operator. If the system is an ordinary differential equa-
tion, the linear operator can be represented by a matrix. The eigenvalues of
this linear operator (or matrix) determine the linear stability. For the discus-
sion below, assume that the system is an ordinary differential equation,
hereafter referred to as an ODE. Define X; and A; as the eigenvectors and
corresponding eigenvalues of the matrix. {In the case of partial differential
equations, the eigenvectors are replaced by eigenfunctions.) The general solu-
tion of the linearized equations is a linear superposition of

X;eM" . (2-1)
If all the eigenvalues have negative real part then any perturbation decays and
the fixed point is stable {(to small enough perturbations). If any eigenvalue has
a positive real part, then a perturbation along the corresponding eigenvector
will grow exponentially, and the fixed point is unstable. If an eigenvalue has
zero real part, then the nonlinear terms determine whether a perturbation

along the corresponding eigenvector grows or decays.

The linear space defined by the set of eigenvectors whose eigenvalues have

negative real part is called the stable eigenspace. Likewise, the center
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(unstable) eigenspace is spanned by the eigenvectors corresponding to eigen-

values with zero (positive) real part.

The center manifold is an example of an invariant manifold: a subspace of
the phase space which is invariant under the dynamics. The stable, unstable,
and center manifolds are tangent to the stable, unstable, and center eigen-
spaces of a fixed point, respectively. It is not obvious that such invariant mani-
folds exist. The center manifold theorem states that such an invariant manifold
does indeed exist. There are analogous theorems for the existence of the other
invariant manifolds (see Hirsch et al. 1967). The book by Marsden & McCracken
(1976) describes how the center manifold theorem is used in bifurcation theory.
The following statement of the center manifold theorem is taken from Marsden

& McCracken (1976, p. 47).
THEOREM: Let Z be a smooth Banach space and let F; be a C° semiflow defined in
a neighborhood of O € Z for O<t<T. Assume F;(0)= 0 and that for t >0, F;(z) is
C**! jointly in t and z. Assume that the spectrum of the linear semigroup
DF(0):Z > Z is of the form et (1Y% ypare g, lies on the imaginary axis and o,
lies in the left half plane Re(gy) < —6<0. Let Y be the generalized eigenspace
carresponding to the part of the spectrum on the wunit circle. Assume
dimY =d <co.

Then there ezists a neighborhood Vof 0in Z and a C* submanifold M C V of
dimension d passing through Oand tangent to Y at Osuch that

(a) (Local invariance): [fz e M, t >0, and Fy;(z)e V.thenF,(z)e M.

(b) (Local attractivity): If £ >0 and Ff(z) remuains defined and in V for all
n=0,12, -, then Ff(z)> M asn » .

For what follows, it is not necessary to understand the details of this

theorem. However, a few remarks are in order:
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® The Banach space formulation is general enough to apply to the partial

different equations of convection.

®* The correspondence between the notation in the theorem and that used

here is:
g, = iAJ ! RE(AJ) = 0;;
Oz = EAJ | Re(AJ) <—-0< O;;
Y =span{X; |Re(A;) = 0} is the center eigenspace;
M is the center manifold.

(2-2)

® The dimension of the center eigenspace must be less than infinity, and
the stable part of the spectrum {o;) must be bounded away from zero. Both of
these conditions are violated in convection, wunless double periodicity is
imposed.

Rather than present a rigorous mathematical treatment of bifurcation
theory, an example is used to illustrate the ideas. Consider the following sys-
tem of ODEs in the plane;

T =Mz —z3+zy (2-3)
Yy = -y +azx®, (2-4)
where (z,y)eR? and A and a are real, fixed parameters.

Note that this ODE is symmetric under the reflection through the y axis.

(z.y)-(-z.y). (2-5)
The point z=y =0 is a stationary solution for all values of A, and the lineari-
zation is
T =Ax (2-8)
¥ =-y (-7)
When A <0 the stable eigenspace is the whole z ~y plane. When A >0 the stable
eigenspace is the y axis and the unstable eigenspace is the z axis. At precisely

A =0 the z axis is the center eigenspace.
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The stable and unstable manifolds are both one-dimensional when A>0.
These manifolds are invariant under the dynamics, an‘d tangent to the stable
and unstable eigenspaces. Note that the y axis, defined by z =0, is invariant
under the dynamics, since £ =0 when z=0. This result is forced by the sym-
metry (2-5); since the y axis is invariant under the reflection it is also invariant

under the dynamics. The y axis is therefore the stable manifold.

The unstable manifold can be written as a Taylor expansion,

y = azx+0(z9), (2-8)
where a must be determined. The fact that the unstable manifold is invariant
under the flow implies that

y =2azxz +0(z3). (2-9)
When the ODE (2-4) is substituted into this equation, one finds
—y +ax?=2arxc?+0(z%), (2-10)
which becomes
(—o+a)z? =2cAz?+0(x3) (2-11)

when equation (2-8) is substituted for y. The above equation determines a:

=2 _ -
o= +en) (2-12)
The unstable manifold, which exists for A >0, is therefore
a
y = a0 2+ 0(x3). (2-13)
When A =0, the center manifold can be found by the same procedure:
y =az?+0(z3). (2-14)

It is natural to use x as the coordinate of the center manifold. This is done
by projecting the center manifold onto the £ axis. The dynamics on the center
manifold are given by inserting (2-14) into equation (2-3):

Z=-z3+2 [aa:2+ 0(2:3)]

={a-1)z3+0(z?). (2-15)

Therefore the sign of (a —1) determines the stability of the origin. This stability
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(or instability) is very sensitive to perturbations in the equations, since any

linear terms will dominate the cubic terms when z is small enough.

A fixed point is called hyperbolic if it has no eigenvalues with zero real
part. The behavior of a hyperbolic fixed point is not sensitive to perturbations
in the equations. A theorem due to Hartman (1973) says that there is a
(nondifferentiable) change of coordinates which eliminates all the nonlinear
terms in the neighborhood of a hyperbolic fixed point. When A is fixed and
nonzero, the qualitative behavior of the nonlinear ODE (2-8), (2-7) near z =y =0
is the same as the linearization (2-3), (2~4>. When A is small, however, the

neighborhood of z=y =0 described in the theorem is also small.

In order to capture the transition from negative to positive A, the system is
extended to include A as an independent variable, treated equally with with

z and y. The resulting three-dimensional system of ODEs is

z =\z—z3+zy (2-186)
y = -y +az? (2-17)
A=0. (2-18)

Now the center manifold is fwo-dimensional when A =0, and one-dimensional

otherwise. The center manifold at A =0 has coordinates (z,A). The dynamics on
the center manifold are

z = Az +{a—-1)z3+0(z%)+ 0(Ax3)+ 0 (N %z) (2-19)

A=0. (2-20)

Note that the coefficient of the cubic term can be calculated at A =0, This

simplifies the calculations.

Assuming a #1, the variable x can be scaled by

T
T > —=

L (2-21)

and the system can be truncated to give the normal form for the pitchfork

bifurcation:
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z =Az+z3 when a-1>0, and (2-22)
z =xz—-z3 when a-1<0. (2-23)
The pitchfork bifurcation is forced by the z » —z reflectional symmetry. The
equation for £ on the center manifold must have only odd order terms in z.

The bifurcation is a pitchfork provided the coefficient of z3 is nonzero.

In order to deserve the designation as a normal form, it must be demon-
strated that the qualitative features of equation (2-22) or (2-23) are unchanged
by adding higher order terms, such as

0(z%, 0(Az?%), and O(A%z). (2-24)

The higher order terms do not change the qualitative features provided all of

the fixed points are hyperbolic when A#0. The analysis of the normal form

shows that the fixed points are indeed hyperbolic. In addition to the stationary
solution at z =0, there is a fixed point at

Atz2=0. (2-25)

The upper sign is for equation (2-22), and the lower sign for equation (2-23).

The linearization of the ODE about the new fixed point is

dx
e = +2z% 2-26
0z [\+z2=0 ( )

Therefore in the "+ version of the normal form (2-22), the nonzero solutions
are unstable, and exist for A <0. This is called a subcritical bifurcation. Con-
versely, the normal form (2-23) corresponds to a supercritical bifurcation,

where the nonzero solutions are stable and exist when A > 0.

It is a general feature that subcritical solutions, i.e. those coexisting with a
stable solution at the origin, are unstable. On the other hand, supercritical
solutions have a stable eigenvector pointing in the direction towards the origin.

Fig. 2-1 gives a pictorial description of the two bifurcations.
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(a) (b) (c)

Fig. 2-1. The bifurcation diagrams for the two cases of the pitchfork bifurca-
tion: (a) the supercritical bifurcation, equation {2-23), and (c) the subcritical
bifurcation, equation (2-22). These diagrams plot the solutions as a function of
the bifurcation parameter A. The stable solutions are indicated by thick lines,
and the unstable solutions by thin lines. The axes of {a) and (c) are shown in
fig. (b). A few trajectories of the two-dimensional system in z and A, equations
(2-19) and (2-20), are drawn in fig. (a).

The Hopf bifurcation is closely related to the pitchfork bifurcation. It
occurs when a complex conjugate pair of eigenvalues (A +iw) crosses into the
right half plane. The normal form for the Hopf bifurcation is

z =(Atiw)z+az |z |?. (2-27)
where the z and a are complex, and A and w are real. This normal form can be
reduced to the pitchfork by writing 2 in polar coordinates,

z =re'?, (2-28)
The time derivatives of z and Z are

z =7e'P+igre'?, and Z =re $—igrei¥, (2-29)

The time derivatives of r and ¢ can be isolated to give
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* = (7% +25)
. 1 _ (2-30)
= —(Z2 —2Z).

#= gt )
The Hopf bifurcation normal form (2-27), written in polar coordinates, is there-
fore

7 = A7 +Re(a )r?
@ = w+Im(a)r?.

(2-31)
The equation for 7 is the same as the (unscaled) pitchfork bifurcation normal
form. The nonzero solutions are called limit cycles. They are oscillatory solu-
tions with a period of approximately w. Nearby trajectories approach stable
limit cycles, and diverge from unstable limit cycles, as time increases. The

value of Im(a) is not important for the qualitative behavior of the system; it

determines how the period changes with amplitude.

The bifurcation diagrams for the Hopf bifurcation are drawn in fig. 2-2.
These diagrams should properly be three-dimensional; two dimensions for z and

one for A. This problem is avoided by using |z |? to represent the limit cycle

i @
> A /

(a) (b) (c) (d)

solutions.

Fig. 2-2. The bifurcation diagrams for the Hopf bifurcation (2-31), with (a)
Re(a) <0 and (c) Re(a)>0. Fig. (b) shows the axes used for the bifurcation di-
agrams and fig. (d) draws the phase portrait in z space for Re(a)<0 and A>0.
Note that, if z® vs. A had been plotted in fig. 2-2(a) and 2-2(c), then the di-
agrams would be identical to figs. (a) and {c) here.
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A familiarity with two more bifurcations is assumed in this dissertation; the

saddle-node and the transcritical bifurcations.

The saddle-node is the ‘‘typical” bifurcation which occurs when there are
no symmetries. The normal form for the saddle-node bifurcation is

Z = A+z?. (2-32)

!

Fig. 2-3. Bifurcation diagram for the saddle-node bifurcation (2-32). If the
phase space is two dimensional, and if the flow is attracting along the direction
perpendicular to the page, then the unstable fixed point is a saddle, and the
stable fixed point is a stable node: hence the name.

The transcritical bifurcation typically occurs when the origin (z =0) is con-
strained to be a fixed point, but there is not a reflection symmetry (z - -z ).
The normal form for the transcritical bifurcation is

Z = Az +2°%. (2-33)
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Fig. 2-4. Bifurcation diagram for the transcritical bifurcation {(2-33).

2.2. Equivariant Vector Fields

The bifurcations mentioned above are the simplest cases which occur when
a single eigenvalue goes through zero, or a single complex conjugate pair of
eigenvalues crosses into the right half plane. When there is no symmetry in the
problem, or if the symmetry is a reflection of a single coordinate (as in (2-5)), it
is unlikely that two real eigenvalues go through zero simultaneously. If two
eigenvalues happen to cross together, the system can be perturbed so that one
eigenvalue crosses into the right hand plane before the other. On the other
hand, symmetry can force multiple eigenvalues to cross into the right hand
plane. Thus, the simplest bifurcations of vector fields with symmetry are often

multiple bifurcations.

The symmetry of a vector field greatly influences what types of bifurca-
tions are possible. The symmetry of an ODE (or vector field) is described by its

equivariance under a transformation.

The first step of a bifurcation analysis in the presence of symmetry is to
find the most general ODE with the given symmetry. Then the Taylor expansion
of the ODE about the bifurcation point is truncated to obtain a candidate nor-

mal form. If this truncated ODE is structurally stable, then it is indeed a normal
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form.

Assume that the system can be described by a point a in phase space,
where a is either real or complex. For this section the phase space is assumed
real,

aeR", (2-34)
but later the complex version is used. The dynamics of the system is given by
an ODE,

a=f(a), (2-35)
where

f:R* - R"*. (2-38)

The system is symmetric if it is left unchanged by a transformation
7:R* - R* ;a-va. (2-37)
The set of all such transformations forms a group, called the symmetry group I

The correct symmetry for an ODE is equivariance. The ODE is equivariant

under [' if

vf(a) = f(-ya) or yef=foy for all yel'. (2-38)
The equivariance condition simply says that a and a transform the same way
under . A more complicated definition of equivariance is needed if the
transformation ¥ is nonlinear; however all symmetries discussed in this disser-

tation are linear.

If fis a linear ODE then it can be represented by a matrix F,
a=f{a)=F-a. (2-39)
The equivariance condition says that the matrix F is unchanged under a simi-

larity transformation by the matrix representation of ¥:

F=y1.F-y. (2-40)
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2.3. Bifurcation in the Plane with the Symmetry of the Square

A fairly s.imple bifurcation with symmetry is presented in this section. The
phase space is the real plane with the symmetry of the square. Many of the
bifurcations which occur in convection are equivalent to this example. Convec-
tion on a square or rhombic lattice has the same normal form, except that the
phase space is complex ( €?) rather than real (R?). The competition between
traveling waves and standing waves in oscillatory convection is also described

by a similar normal form.

Let the real, two-dimensional plane be described by the coordinates
(z,,z;) € R% The coordinates are naturally chosen so that the symmetries of

the square are

-'Cz N
(z1.ze) > (z1.22) N

(zy ) » (—z 1, 22) N
(z1.22) > (21, —72) D
(1 z3) > (~z1. —Z2)
(1,72) > (z2.7)) L
(z,,22) > (~z2 7)) .
(z,.23) > (z2 -z,)

(xlvzz) »{—Zg —x,).

Ve
\

‘ AN (2-41)

Fig. 2-5. The symmetries of a square in the z,-zp plane (D, symmetry). Each
reflection is indicated by a dotted line, and the proper rotations are indicated
by curved arrows.

The technique for finding the most general equivariant ODE is to look at
each term in the Taylor expansion. The equivariance under (z,,z3) » (- ,,z2)
gives

(2, 22) =%, (-2, 75). (2-42)
Applied to a typical term in the Taylor expansion,
Tig,te, (2-43)

this equivariance condition implies
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—(z 1'”2-'2“2) = (‘zl)nlxznz = (_1)1;1(2_ 1n1-’tzn2): (R-44)
therefore m, must be odd. The equivariance under (z,,z3) - (z,, —zp) implies
that n, is even. The general equivariant ODE is therefore

£y =2z,9(x,% z27), (2-45)
where g is an arbitrary function of two variables:
g R?->R. (R-48)
The interchange symmetry yields the equivariance condition
Zo(z ). 22) =2 (2 2 21)., (2-47)
and therefore
Zg=za9(z%2,7). (2-48)
It can be verified that the system (2-45), (2-48) is equivariant under all the sym-

metries of the square.

The next step in the search for a normal form is to truncate the ODE,
including the dependence on the bifurcation parameter X. The scaling can be
chosen so that A is the eigenvalue of the trivial solution (z, =z3=0). This gives
a one parameter family of equivariant vector fields,

a=f(a,A)=xa+ - . (2-49)
The A dependence of f can be more complicated in general, since A represents
the parameter which is adjusted in an experiment. Singularity theory (see
Golubitsky & Schaeffer 1984 ) gives a method for treating cases such as
a=Ma+ -, (2-50)
but this complication is ignored here.

The third order truncation of the general equivariant vector field with the

symmetry of the square is
:z':1=2:1[}\+a:z:22+b(z12+x22)]
(2-51)
Fo=zo[ Nraz B+ (z,%+2,2)],

where a and b are arbitrary real parameters. There are of course many ways
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to write this result. This choice is motivated by the calculation of the
coefficients @ and b in the convection examples. The contributions to £, natur-

ally separate'into the two terms shown.

2.3.1. The analysis of the normal form

The final step in the search for a normal form is to test this truncated sys-
tem for structural stability. If it is structurally stable for all A near zero, but

excluding A =0, then it is a normal form.

Consider the vector field defined on a two-dimensional disk containing the
origin. Such a vector field is structurally stable if (1) all of the fixed points and
limit cycles are isolated and hyperbolic, and (2) if there are no saddle connec-
tions (Arnol'd 1983, pp. 94-95). By definition, the eigenvalues of the linear sta-
bility analysis of a hyperbolic fixed point have nonzero real part. Similarly, the
Floquet exponents of a hyperbolic limit cycle have nonzero real parts, except
for one exponent which is forced to be zero. The zero exponent corresponds to
a perturbation in the direction of the flow. A consequence of structural stabil-
ity, or robustness as it is often called, is that the higher order terms neglected

in the truncation wiil not change the qualitative aspects of the system.

The truncation (2-51) is indeed a normal form. This is verified in the

analysis of this section.

The fixed points are found by setting £, =£,=0. It is useful to cross multi-
ply the equations:
0=x,2a-22%, =bx,za{z,°—25°). (2-52)
Therefore either
b=0, or z,z,=0, or z,°=zxz°. (2-53)
If b =0 there is a whole circle of solutions at z,*+z,2 =\, and the system is cer-

tainly not structurally stable. When b#0, the possible solution types are
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defined as follows;

conduction : A?2=1z,%+z,°=0 (2-54)
rolls: z,z,=0, A%#0 (2-55)
squares: z,2=z,°#0. (2-58)

These names are chosen to correspond to the solution types of convection
on a square lattice. The names "face” and "corner” would be more descriptive
of the square, but there is an ambiguity; the z, and z, axes can point in the

direction of a face or a corner of the square.

The simplest place to look for solutions of the ODE is on the lines of
reflectional symmetry. These lines fall into two classes; the lines which contain
the rolls,

z,=0,and z, =0, (2-57)
and the lines which contain the squares,
T,=z3,and z;=—Zjp. (2-58)

The amplitude of these two solution types, as a function of A, is given by
the solution of a single algebraic equation. The other equation is automatically
satisfied as a consequence of the symmetry. The rolls with z;#0 satisfy

0=X+bz,%. (2-59)

The squares satisfy
0=A+(a +2b)z,>. (2-80)
It will soon become evident that it is best to express these results in term of the

amplitude squared:

A% =z %+z,°. (2-81)
For rolls,
A% = '2 . (2-62)

and for squares,
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L —— (2-63)

The stability of the stationary solutions to infinitesimal perturbations is

found by computing the eigenvalues of the Jacobian matrix J, defined by

8%, 0z,
dz, 0zg

J=Di=|o. as,| (2-64)
8z, 0z,

This matrix gives the linearization of the system about a solution. Let
(z1.22) = (Z1, %)+ (62}, 6z2) (2-85)
where (Z,,Z;) =2 is a stationary solution. The linearized equations for the per-

turbations are
oz ox
d 1 1
Et“[darz] —Jl;-[dzz]. (2-66)
where the Jacobian matrix is evaluated at the stationary solution.

Only two of the elements of J,

az,

a—l= (A+azy?+bAR)+2bz R (2-87)
and
az
__6.'1:; =2(a+b)zx x5, (2-68)

need be calculated. This is because the symmetry of a solution restricts the
form of the Jacobian matrix. When the equivariance condition,
f(ya) =71 (a), (2-69)
is differentiated, it follows from the chain rule that
Df| 5oy =72 DE | 4. (2-70)
Therefore the matrix JI; commutes with all ¥ in the isofropy subgroup of a,

defined by
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Lz={yel such that ya=a)j. (2-71)

The symmetry of a solution is described by its isotropy subgroup.
The isotropy subgroup of the conduction solution is the whole group I
Therefore the Jacobian matrix, evaluated at z, =z, =0, commutes with all the
matrices which correspond to the mappings (2-41). The result is that Jis a mul-

tiple of the identity matrix,

A O
de=|’ . (2-72)
0 A
where
= 9% . (2-73)
0z, |[z,=2,5=0]

The conduction solution therefore has A as a double eigenvalue.

The rolls (with z,#0) are left invariant by the group element

z, 1 0f|%
(z1,zp) > (z,,—z3), oOr 2o 7|0 =1 ||z, (2-74)
Therefore the matrix J, evaluated at the rolls, commutes with the matrix
1 0
0 -1 (2-75)
The consequence is that
. O] (2-76)
dp= , 2-76
0 g
where
=85 =2bz,? = 2bA% (2-77)
8z, I:sz,a:o] ! ’
z2=0
and
0z, oz, 2
= —— = —— = . 2'78
A Bzs [sz,a:o] 8z, [szza:c] ad ( )
z5=0 z,=0

The eigenvalues of this matrix are clearly a and 8.



61

The isotropy subgroup of the squares (with z, =z;) is the group composed

of the identity transformation and the mapping

T, 0 1]z,
F)-( o)) 5

Therefore the Jacobian matrix for the squares has the form

nov
Js=[ , (2-80)
L S
where
0z,
= — = 2=pAR, 2-81
oz, [A+(a+2b)z12=o] _bz, A ( )
zl=zz
and
et =2(a +b =(a+b)A? (2-82)
V= Az, [)\+(a+2b)zla=0] =2(a+b)zze=(a ‘
zl =22
The eigenvectors of J5 are
1 1
[1], and [__1], ' (2-83)
and the eigenvalues are
u+v={_a+2b)A*, and p—v=-aAd® (2-84)

respectively.

There are no limit cycle solutions to the truncated system (51). This is

because the ODE can be written as a gradient vector field;

aL(.’L'l, 2:2)
= e 2-85
x, 9z ( )

BL(z, z2)
= = L7El 2-86
Zz 872 ( )

where

L(z 1 zp) = INz P +2 2+ Loz P+ Lb (2, 242,7)°. (2-87)

The proof is as follows: Along trajectories of the system under (2-85) and (2-88),

L is strictly increasing (in other words it is a Liapunov function). If there were
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a limit cycle, the value of L would have to increase over one period of the oscil-
lation. On the other hand, since L is only a function of position it would have to
repeat itself after one period. Since this is a contradiction, there can be no
limit cycles.
It is worth noting that the general equivariant ODE (2-45), (2-48) cannot be
written as a gradient system. The gradient of any invariant function,
Lz z2) = L(-T1.22) = L(z2 z,), (2-88)
is an equivariant vector field, but not all equivariant vector fields can be written
as the gradient of some L. For example, the general fifth order terms in the

ODE which are given by a gradient are

. 8
z,= 5—.';1—[:Td(-’516*‘-’528)'*‘%2(214222*'2121'24)] (2-89)
=z ,(dz*+2ex Px?+ex,*). (2-90)

This is more restricted than the general equivariant ODE, where the coefficients

of all three quintic terms are arbitrary.

The last condition for structural stability of a two-dimensional vector field
is that there are no saddle connections. A saddle connection is where a one-
dimensional unstable manifold of a fixed point is also a stable manifold of the
same or a different fixed point. This does not happen in (2-51) because rolls
and squares never coexist as saddle points. (A saddle point has one positive
and one negative eigenvalue.) Roll-roll or square-square saddle connections are
impossible because one of the invariant manifolds of the saddle point is on the

line of reflectional symmetry (see the phase portraits of fig. 2-6).

This completes the demonstration that the third order system (2-51) is
structurally stable for fixed A#0 (and therefore the one parameter family f(a, A)

is structurally stable), provided certain non-degeneracy conditions hold;
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a#0, b#0, and a +2b #0. (2-91)
These conditions are inequalities, and are therefore satisfied for ‘‘most’ values
of a and b.

A fourth non-degeneracy condition is implicit in this treatment. It is
required that the eigenvalue of the trivial solution (conduction) cross zero with
nonzero speed as the bifurcation parameter is varied. In other words, the
situation shown in equation (2-50) does not happen.

The conditions b #0 and a +2b #0 ensure that neither the roll nor square
solutions satisfy

0=A+0-4%+0(A*%). (2-92)
When this happens fifth order terms are needed.

The condition a#0 ensures that the eigenvalues of the square and roll

solutions are nonzero, and that there are no solutions other than conduction,

squares, and rolls.

The following table summarizes the results for the least degenerate bifur-

cation with the symmetry of a square in the plane (D, symmetry).

name definition amplitude eigenvalues
conduction | x, =z?=0 AR=0 A A
rolls z,2,=0, A%#0 | A%= —_%-— 2bA%, aA?
squares xz,%2=x2,°#0 AR = —é:ﬁ—l—)— (a +2b)A%, —aA®

Table 2-1. Small amplitude solutions of equation (2-51).

These results are shown here in two ways. In fig. 2-6 the phase portraits
are drawn for a, b, and A fixed. The bifurcation diagrams, which plot A% vs. A,

for a and b fixed, are in figs. 2-7 and 2-8.
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One of the parameters in the normal form (2-51) can be set to +1 by a

scaling of the amplitudes. For instance, let
(z1.72) » o= (z1.22) (2-93)
Vb
and the normal form becomes

E, = Az, + -I-(—L:'Tzlzzz+sgn(b )z ,A%. (2-94)

Note that the sign of the coefficients cannot be changed, however. This scaling
is discontinuous when b changes sign. A different way to scale the normal form
is to set
a?+b®=1 (2-95)
by the change of variables
(z1.22) » (a+6%) "V (z1,z0). (2-96)
This scaling only becomes singular when both @ and  are zero. This shows that

the normal form has only one free parameter: the angle in the a-4 plane.

The calculation of the coefficients in the normal form naturally give formu-
las for @ and b. It is awkward to rescale the normal form if both @ and b are
complicated functions of the natural parameters in the problem. Therefore the

results are presented here with both o and b retained in the normal form.

The gqualitative features of the solutions depend only on the signs of
a,b,and a+2b. Fig. 2-7 shows the six regions in the a-b plane which are
defined by the non-degeneracy conditions, and fig. 2-8 shows the bifurcation

diagrams for each of these regions.
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A>0, a>0, b<0, a+2b <0

A<D, b<O, a+2b>0 A>0, <0, a+2b >0

Fig. 2-8. Phase portraits of the normal form with D, symmetry, equation (2-51),
for fixed values of the coefficients A, @, and &. The picture at the upper right
shows axes of the phase portraits. Using the symmetries of the system, the
phase portraits in the entire z -z, plane can be reconstructed from the regions
pictured here. The roll solutions (R) are fixed points on the z, and z, axes, and
the square solutions (S) are fixed points on the the lines defined by z,;+z;=0
and z,-z,=0. The conduction solution (C) is at the origin, z;=2,=0. The
nomenclature is due to the application of this normal form to convection. In
these and all future phase portraits, unstable fixed points are indicated by an
open circle, stable fixed points by a closed circle, and saddle peoints by a half-
filled circle.
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Bifurcation in the Plane with the Symmetry of the Square

Z,=z,(A+az?+bA4%), zZ,=z,(Ataz?+bA®), A=z ,%+z.f

II a+2b =0

Fig. 2-7. The behavior of the normal form (2-51), listed above, depends on the
coefficients @ and b. The a-b plane is divided into six regions by the non-

degeneracy conditions: a #0, b #0, and a+2b #0. Within each region, the quali-
tative behavior is similar.

R VI S S v R v
\\y R x |
. C C
AR
I R 1I S S T0I
A
S R
c C
C: Conduction R : Rolls S : Squares

Fig. 2-8. The possible bifurcation diagrams, which plot A® vs. A, for a and &
within each of the regions shown above. A bold line represents stable solutions,
a fine line represents unstable solutions. These diagrams are relevant to three
different normal forms: (1) Bifurcation in the plane with the symmetry of the
square, {(2) Convection on a square or rhombic lattice (equation (2-151)), and

(3) Hopf bifurcation in two-dimensional convection (equation (3-35)). Cases (2)
and (3) are discussed later, in sections 2.7 and 3.2.
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2.4. Bifurcation Theory Applied to Convection

The first step of the bifurcation analysis is to solve the linearized equa-
tions. This has been done in Chapter One; the essential elements of the linear

analysis are repeated here.

When the lateral boundaries are sufficiently far away, the fluid layer can be
considered infinite in the horizontal plane. The convection equations are then
equivariant with respect to rigid motions in the plane, (that is, all translations
and rotations). The coefficients of the partial differential equations are con-
stant in the horizontal plane, but may depend on the vertical coordinate. With
these assumptions the partial differential equations, linearized about the con-
duction solution, are separable. The eigenfunctions are of the form

f(z)etkx, (2-97)
where 2z is the vertical direction and k is a two-dimensional vector in the hor-
izontal plane. These eigenfunctions are called 7olls, because the fluid circu-
lates in counter rotating cylinders, as shown in fig. 2-9(a). The k vector of a roll

is perpendicular to the roll axis, since the fields change in the direction of k.

The linear stability analysis determines when an infinitesimal roll distur-
bance grows or decays with time. Because the system is linearized, the rolls
have an exponential time dependence,

et (2-98)
where the eigenvalues (A;) depend on the Rayleigh number as well as |k|2
When the real part of A; is positive the corresponding disturbance grows and
the conduction solution is unstable. Assume that the results of the linear sta-
bility analysis give a diagram similar to fig. 2-9(b). There is a critical Rayleigh
number, K;, below which all roll disturbances decay. At the critical Rayleigh
number, the rolls with the critical wavenumber, |k|? =k ?, are neutrally stable.

This defines the circle of critical k vectors in the two-dimensional k space,
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shown in fig. 2-9(c). For R >R,, there is a range of wavenumbers, all of which

are unstable.

568 |

k k.

k| % = ke ?

(a) (b) (c)

Fig. 2-9. (a) A roll and its associated k vector. (b) Linear stability analysis finds
the critical Rayleigh number K, and the corresponding critical wavenumber
squared, k.2 (c) The circle of critical k vectors.

2.5. Doubly Periodic Convection
The crucial assumnption of this work, which forces the number of critical
rolls to be finite, is that all fields are doubly periodic in the horizontal plane,.
This means that there are two translation vectors w; and w; in the horizontal

plane such that all fields satisfy
Y(x) =Y(x+n Wi +nw,) (2-99)
for all integers n, and nz. The vertical dependence of 7 is suppressed in the
discussion of double periodicity. The Fourier transform of such doubly periodic

functions is discrete:

IL,m=-oa ke 72
where
Ye=Y_x and ko, Wg=0,4. (2-101)

The overbar denotes complex conjugation, the labels a and 8 run from 1 to 2,
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and 8,4 is the Kronecker delta function. The sum on k ranges over a two-

dimensional lattice, which can be identified with the ordered pairs of integers:
keflk,+mky|(I.m)eZ?. (2-102)

In the sums, e.g. (2-100), the range of k is abbreviated by

keZ2?. (2-103)
When double periodicity is not imposed, the rotational degeneracy of the
problem is troublesome, because there are an infinite number of eigenfunctions
with zero eigenvalue at £ = K, {one for each direction of k). In addition, there
are stable modes with an eigenvalue arbitrarily close to zero. This contradicts
two of the hypotheses of the center manifold theorem: (1) dim Y < o0, and (2)
02 <—0<0. These complications are avoided by imposing double periodicity in
the horizontal plane. When all fields are doubly periodic, a finite number of
eigenfunctions go unstable at the bifurcation, and the center manifold theorem
allows a description of the dynamics near the bifurcation in terms of an ordi-

nary differential equation for the critical amplitudes.

The assumption of doubly periodic convection is only partially justified
physically. The most frequently observed patters {rolls, squares, and hexagons)
are doubly periodic, although there are always defects in the patterns. Clearly,
doubly periodic patterns must be understood before the defects can be studied.
The disadvantage of imposing double periodicity is that defects in the cellular
structure cannot be studied. Newell & Whitehead (1969), and Segel (1969)
developed a method for studying defects by allowing the amplitudes to depend
on a slow spatial scale. Work continues using the approach (see for example
Cross & Newell (1984)). This method assumes that two-dimensional rolls are
stable to three-dimensional disturbances in an infinite layer. If the doubly
periodic analysis shows that squares or hexagons are stable instead of rolls,

then the procedure for studying defects must be modified.
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The choice of the two basis vectors in k space, k; and k; in equation (2-
102), is not unique. However, the basis vector can always be chosen so that one
of five sets of equalities and inequalities holds. This defines the five different

types of k space lattices for double periodicity in the plane:

Hexagonal lattice

[k, 12 = |k | %50, kl'k2=_%|kl|2 (2-104)
Square lattice
|ky %= |ke|?#0, lo'ke=0 (2-105)
Rhombic lattice
[y 2= [k |220, kidp#0, kyke# £ 1|k |? (2-1086)
Rectangular lattice
0# |k, |?# | ky|?#0, k;-ky=0 (2-107)
General lattice
None of the above are possible. (2-108)

Examples of these lattices are drawn in fig. 2-10.
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Fig.2-10. The k space lattices representing the 5 types of double periodicity in
the plane are shown in the first column; the corresponding real space lattices
are in the second column. One fundamental region in each of the real space
lattices is indicated. The fundamental region defines a tiling of the plane such
that all fields are repeated exactly in each tile.
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When the fields are doubly periodic, the partial differential equations can
be reduced to an infinite-dimensional system of ordinary differential equation

for the complex amplitudes, ¥y, (t), where the fields are written as

V() =Fa(z) 3 Yunlt)e'™™ (2-109)

keZ®

Here the vertical eigenfunctions, f,(z), are labeled by a vertical “quantum

number” n. The critical mode hasn = 1.

At K., all the amplitudes %m(t) are linearly damped except the critical
modes. As with the example of equation (2-3), (2-4), the damped degrees of
freedom can be eliminated since the system is attracted to the center manifold.

Then a normal form describes the dynamics on the center manifold.

When the two vectors k, have length equal to the critical wavenumber k,
the resulting k space lattices are either hexagonal, square, or rhombic. Sat-
tinger (1979) found the normal forms for the least degenerate bifurcations on
these lattices. He found that in the non-Boussinesq case on the hexagonal lat-
tice the least degenerate bifurcation does not have any stable solutions near
the origin. Sattinger's work has been extended in the hexagonal case by
Buzano & Golubitsky (1983), using singularity theory. They found the normal
form for a degenerate bifurcation, in the non-Boussinesq case, which has stable
solutions in the local analysis. Golubitsky et al. (1984) then studied the onset
of convection on the hexagonal lattice in the Boussinesq approximation, as well

as the case in which all of the non-Boussinesq terms are small.

Busse has also considered the question of what patterns are possible,
purely on the grounds of symmetry. In place of double periodicity, Busse (1978,
etc.) introduces a more general superposition of N critical k vectors, and trun-
cates the equations to third order. At least two classes of solution to this trun-
cated system exist; regular patterns, where the critical k vectors are equally

spaced around the circle, and semi-regular patterns, where the angle between k
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vectors

alternates between two values as one goes around the circle. In both cases
each roll has equal amplitude. These patterns are quasi-periodic when there
are three (or more) critical k vectors such that

n,k +nyk,+ngky =0 implies n, =n,=ng=0. ' (2-110)
Quasi-periodic patterns introduce complications at higher order in the ampli-
tude, since sums and differences of critical k vectors can excite modes which
have |k|? arbitrarily close to k2. This introduces “small denominator' prob-

lems which prevent one from finding the normal form.

2.6. Translations and Rotations of Doubly Periodic Functions

The convection equations are equivariant with respect to the Euclidean
group in the horizontal plane, that is, all combinations of translations and rota-
tions (including reflections). The Euclidean group is technically a semi-direct
product of these translations and rotations, because these two operations do

not commute, but this is not an important distinction for what follows.

The translations x- x+d transform the doubly periodic functions (2-100)

as follows:

Y(x+d)= ) yyelkixrd = Y (yyeikd)gikx, (2-111)
ke 7Z2 keZ?2

Therefore the translation x-» x+d corresponds to the phase shift
Vi Yre 'kl (2-112)
The domain of doubly periodic functions is a two-torus, and the translations
can also be identified with a torus, with coordinates
(k;-d, ko-d). (2-113)
The rotations act on the horizontal by a linear transformation
x - Rx, (2-114)

where the transpose of R equals R™!. As a consequence,
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k(Rx)=(R k) x. (2-115)

The notation used here is that rotations include reflections, so that
DetR= +1. (2-118)
The terms proper rolations and proper Euclidean group will be used when

reflections are excluded.

The doubly periodic functions transform under rotations as

Y(Rx) = Z ,gokeik-(Rx): 2 wkei(n‘l-k)-x= Z ¢R_keikx; (2-117)
keZ2 ke Z? keZ®

therefore the rotation x-» R-x corresponds to
Ve~ YRk (2-118)
A rotation preserves doubly periodic functions on a given lattice only if R
preserves the k lattice. This is a major restriction. The rotations which
preserve the five types of lattices, where k; and k; are chosen according to the

classification of equations {(2-104) through (2-108), are listed below.

Hexagonal lattice

(kl-kz) - (kl'kB)' "(klvkz) ) (kz-kx)- —(kavkl) ,
(k). -k -kg), (k. K +kg), (ks —k;—kz), (—kg k;+kg) (2-119)
(-k,-ka. k), (k +ks, —-k;), (-k;—Kks ks), (k;+kq, —k3) .

Square lattice

(ki ke) -+ (ki k). —(kp ko), (kz.ky), —(ke k)

(-kike). (ki-ke), (ke -k, (—ke k). (2-120)
Rhombic lattice
(ki ko) » (ki k), —(kp k), (ke k), —(ke k). (2-121)
Rectangular lattice
(k. k) » (ki k), —(ky k), (K —ke). (kg k). (2-122)

General lattice

(ky. kg) » (ki k), —(ky Kg) - (2-123)
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The hexagonal and square lattices are left invariant by the symmetries of
the hexagon and square, respectively. Both of these include the symmetry of
the rectangle. as a subgroup, but neither is a subgroup of the other. The rhom-
bic and rectangular lattices are preserved by the symmetries of the rectangle;
two reflections across perpendicular lines, and the composition of these two
which is a 180° rotation. The general lattice is preserved only by the 180° rota-

tion and the identity transformation.

2.6.1. Irreducible representations

The irreducible representations are important for bifurcation problems,
because if one member of an irreducible representation goes unstable, then
they all do. Therefore the linear stability analysis need only be done for a sin-

gle mode.

An irreducible representation is a linear space which is invariant under the
symmetry, and which cannot be separated into two invariant spaces. For con-

tinuous symmetries the basis vectors of the linear space are functions.

A familiar example is provided by the irreducible representations of the
rotation group in three dimensions, which are the sets of ¥, ,,'s (for a given I).
This means that any function on the sphere which is a linear combination of

Y, m's (for fixed I ) remains such a linear combination when it is rotated.

The irreducible representations of the Euclidean group are generated by
fe'®*= | |k|?=const.}. (2-124)
There is an infinite-dimensional irreducible representation for each nonzero
value of |k|?.
The Euclidean group, restricted to doubly periodic functions, is a compact
group; therefore the irreducible representations are finite dimensional. (This

situation is similar to the rotation group and the Yl,m's.) The irreducible
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representations of the Euclidean group, restricted to doubly periodic functions,
are generated by

foikx gikx .. . gik'xy (2-125)
where the k vectors are the maximal sets which are taken into each other by
the rotations which preserve the lattice. (The translations only mix k and -k,
so the rotations alone generate the invariant spaces.) The dimension of the
irreducible representation is the number of k vectors in the set. From the list
of allowed rotations in equations {(2-119)-(2-23) it can be seen that the max-
imum dimension of the irreducible representations is 12 in the hexagonal lat-
tice, 8 in the square lattice, etc. It is possible, however, that a k vector is
invariant under one or more of the rotations, in which case the irreducible
representation will have a smaller dimension. For instance, k=0 always gives a

one-dimensional representation.

The sets of k vectors can be indicated by the components in the canonical
basis:

(1. m)=1k,+mKk;. (2-128)

The irreducible representations for the rhombic lattice are either 1, 2, or

4-dimensional.

1: (0,0)
2: (L) (=1,-1), L#0
2: (1,=1) (=1.l), l#0
4: (I.m) (m,l) (-L,~m) (-m,~l), l#m ,butm =0 is allowed.

(2-127)

For the square lattice, the irreducible representations are either 1, 4, or

8-dimensional:

1: (0,0)
4: (1,0) (=1,0) (0,0) (0.=1),
4: (L) (L=1) (L) (=t.-1), (2-128)

8: ({,m) ({,-m) (-l,m) (~L,-m) (m.,l) (m,~l) (-m /) (-m,-1),

where { #0, m #0, and ! #m in all cases.
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In a similar way, the irreducible representations for the hexagonal lattice

are either 1, 6, or 12-dimensional.

Fig. 2-11 gives a graphical representation of various irreducible represen-

tations.

When |k, |?= |kz|?=k.>?, the critical modes span a four (or six in the hexag-
onal lattice) dimensional irreducible representation which includes (1,0). More
exotic possibilities include the 8 or 12-dimensional irreducible representations,
as well as cases where two irreducible representations have the same |k|%. An
example of this latter possibility is the (4+8)-dimensional (reducible) represen-
tation in the square lattice generated by all rotations of the following k vectors:

(5,0) and (3,4). (2-129)
These two irreducible representations go unstable at the same Rayleigh number
since |5k, |? = |3k, +4k,]|%.

These higher dimensional representations may be important as a method
for approximating the dislocations and imperfections of the doubly periodic
patterns which are observed in the laboratory. The normal forms for these
cases are high dimensional, and may have chaotic dynamics. This could
correspond to the so-called phase turbulence, which sets in right at the critical
Rayleigh number in large aspect ratio systems. This phase turbulence results
when the pattern slowly shifts around, never annealing into perfect double
periodicity (see Ahlers & Behringer 1978, Ahlers & Walden 1980). It should be
mentioned that the system is extremely sensitive to external noise because of

the translational invariance.
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Fig. 2-11. Examples of irreducible representations of the group of translations
and rotations of doubly periodic functions on the rhombic, square, and hexago-
nal lattices. The irreducible representations correspond to sets of k vectors
which are connected by the symmetries listed in equations (2-119) through (2-
123). The dimension of the irreducible representation is the number of k vec-
tors which are connected in this way. The k vectors lie on a circle about the
origin, as indicated. The dimension of the representation, (N), and one k vector
in the set, {{k;+mkz), are indicated by N:(I, m).
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2.7. Convection on a Square or Rhombic Lattice

In convection, the critical eigenspace is the set of rolls which have the crit-
ical wavenumber. The normal form is an ordinary differential equation for the
time dependent complex amplitudes of these critical rolls. In the rhombic and
square lattice, when k;, and ky are chosen to have the critical wavenumber, the
phase space for the normal form is C? the ordered pairs of two complex
numbers. For instance, with stress-free boundary conditions in Bénard convec-

tion, the critical eigenspace is
w(x,z,t) =3sin(z )[z R T i P e L —““31] (2-130)

v(x,2,t)= sin(z)[z leik"x+ile_ik"x+zzeike'x+529 _ike'x] (2-131)
where (2,,25) € C2. The normal form is then an ODE for z,(t) and 2(t).

The translations and rotations act on the critical eigenspace as follows:
The translations are
(z.22) » ("% o5z, (2-132)
The 180° rotation is
(z1.22) » (Z1.22). (2-133)
The reflection which interchanges k; and k; is
(z1.22) > (z2.2,). (2-134)
The transformations listed above are relevant to all lattices. The square lattice
also has the reflection across the k; direction;
(z1.22) » (21.22). (2-135)
The hexagonal lattice will be discussed separately in section 2.9.
Not all of the symmetries have been listed here. The full symmetry group
is made up of all compositions of the transformations (2-132), (2-133), (2-134),
and if applicable, (2-135). The normal form is equivariant with respect to these

transformations. The equivariance condition is the same as equation (2-39),
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vf(a) = f(ya) for all yeT, (2-136)
except the symbols are now complex;
a=(z,,zp)e C?, f: C*> C?, and y: C?®> C?, (2-137)
The equivariance condition for the translations, written in components, is
e M9 (2,,20) = 2,(e 12 e Y2,) (-138)
e MY (2 ,2,) = 2,(e M1z 0 MYy, (2-139)
Without any symmetry considerations, a general term in the Taylor expan-
sion of 2, is
2.~z Mz, 2", (2-140)
When applied to this general term, the equivariance under translations implies

that

ikkd n,_m g
elzll 1 2

7= (o0 ) (o0, ) (o M) (e Moty (2 141)
which reduces to
gtErd_ il d)(ny-my)  i(ked)(ng-mp) (2-142)
This must be true for all translations d; therefore
n,=m,+1,and npg=mj,, (2-143)
and 2, is of the form
21=2,19(12z1|% |2¢]%), (2-144)
where g is an arbitrary function.

As a consequence of the translational symmetry, the nonlinear interaction
of two rolls with wavenumbers k and k' couples to the roll with wavenumber
k+k'. This property is called mode coupling. The sum of the k vectors
corresponding to the amplitudes on the right hand side of (2-140) must equal
the k vector of the amplitude on the left hand side. (Note that -k, is the k vec-
.tor corresponding to #,.) In other words, the product of amplitudes transforms,
under translations, with an effective k which is the sum of the individual k vec-

tors.
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When d is chosen so that k;"d=kp-d =0, the translational symmetry is

(z1.22) » —(21,22). (2-145)
This is the same as the symmetry which is forced by the Boussinesq approxima-
tion. Therefore, the normal form for the square and rhombic lattices is the
same in the Boussinesq and non-Boussinesq cases. The symmetry of the higher
order modes on the center manifold is different in the two cases, however. In
the non-Boussinesq case the walls of the square pattern are distinguished from
the centers, and the upward flow favors one or the other. In the Boussinesq

case there is a symmetry between upward and downward flow.

The complex conjugation symmetry (2-133) forces the function g in equa-
tion (2-144) to be real. This is because the equivariance condition (2-136)
requires that

Z2,(z1.25) =2,(2,.22). (2-146)

Applied to (2-144) this gives

2

z,9(lz, zz|%)=2,9(]2,1% |22]?). (2-147)

Therefore g is a real valued function of two variables;
g:Re->R. (2-148)
The interchange symmetry of 2z, and z; allows the equation for z; to be
inferred from the ODE for 2,;
22(2z1,22) = 21(2z2,21). (2-149)
Therefore, for convection on a rhombic lattice, the most general equivari-
ant vector field can be written

2'1(21:22)=219“21|2,|22|2)

. 2-150
2o(z1.23) =29 (]22|%]2,]%). ( )

where g is an arbitrary real valued function of two variables.

In the square lattice, the additional symmetry
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(21.22) > (2. %3) (2-151)
does not change the most general equivariant ODE. The difference between the

square and rhombic lattices is not apparent in the normal form.

Truncating this ODE at third order gives the candidate for a normal form:

z2,=Az +az,|zg|*+b2 (|2, ]?+]|2z]?)

) 2-152
dp=Azgtazg|zy|2rbza(|z, |24 25]?). (2-152)

where a and b are real. The bifurcation parameter A is proporticnal to R—Ff;.

2.7.1. The analysis of the normal form

Note the similarity of {2-152) to the normal form for bifurcations with the
symmetry of the square in the real plane (2-51). The only difference is that in
(2-152) the amplitudes are complex, rather than real. It turns out that the
complex nature of the normal form for convection on a square or rhombic lat-
tice does not change the results significantly; in particular the third order
truncation (2-152) is a normal form and the bifurcation diagrams of fig. 2-8 are

applicable to the complex normal form.

1t is useful to use the polar coordinates for the complex amplitudes. Let
z,=z ", (2-153)
where a=1 or 2, and z, is real and nonnegative.

Using the technique of equations (2-30) and (2-31), the general equivariant
ODE (2-150) becomes
z) =-”-'19(-’512- z%)
Zp=259(z7%, ,°)
#1=0
@2=0.

(2-154)

The first two equations above are identical to the normal form considered in
section 2.3. The phases do not introduce any significant complications. If the

initial phases are ¢, and ¢j, the displacement x - x+d transforms the phases to
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zero, where

dk,=-9,. and d'kg= —05. (2-155)
This is possible because there are two independent translations. {In the hexag-
onal lattice, the amplitudes cannot always be made real, because there are
three phases and two translations.) Therefore the phases are unimportant, and

many of the results of section 2.3 are applicable to the complex normal form.

There is a difference between the two systems in the linear stability
analysis, however, since a solution in the complex system must have four eigen-
values. The analysis of the complex normal form follows, concentrating on the
physics of solutions and the differences between the real and complex normal

forms.

The analysis is similar to the analysis of the real normal form. The station-
ary solution types are found by cross multiplying the two equations:
212p—222, = b2 25(|2,|%—2,|?) (2-158)

Assuming b #0, the only solution types are;

conduction : 4%=]z,|%+|2,|%=0 (2-157)
rolls: z,2z;=0, A%#0 (2-158)
squares (or rectangles) : |z,|?=|2z3|?#0 (2-159)

Fig. 2-12 shows the planform, or view from above, of these patterns. The
cold regions, where the temperature perturbation is negative, are white and the
hot regions are shaded. This corresponds to the shadowgraph technique of
visualization, where the cold fluid has a higher index of refraction and acts like

a converging lens.

The equal amplitude (|z,|?=|23|?) solutions are called squares in the
square lattice and rectangles in the rhombic lattice. Note that the fundamen-
tal region (one ‘'tile” in the tiling of the plane) for double periodicity on the

rhombic lattice can be a rectangle as well as a rhombus. In the discussion
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below, both the squares and rectangles are referred to as squares for simpli-
city.

The sum of the squares of the amplitudes {often called the amplitude of a
solution),

A=z |+ ] 202, (2-160)
has an important physical interpretation; it is proportional to the convective
heat transport. The vertical heat flux through the layer is measured non-
dimensionally by the Nusselt number Mu, which is normalized so that Mz =1 is
the contribution of heat conduction. The heat transported across the layer due
to convection is the average over the layer of

( 93

Y . oc Nu—1oc A2+0(A%), (2-181)

where w is the vertical velocity.
The amplitude as a function of the Rayleigh number (A) for the two non-

trivial solutions is easily found:

rolls: A%= :—b75-— (2-162)

squares : A%= ‘_)\+b (2-163)
E—a
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Convection Planforms

Rolls
Squares
wi
Boussinesq case non-Boussinesq case
Rectangles

Fig. 2-12. Convection planforms with the double periodicity of the square or
rhombic lattice. These figures schematically represent the convection plan-
forms, as observed with the shadowgraph technique. Parallel light is shined
through the fluid, in the Z direction, onto a screen. The cold regions act as a
converging lens and are therefore brighter than the warm regions. The rolls
are present on all the doubly periodic lattices. The squares and rectangles ex-
ist on the square and rhombic lattices, respectively. While the normal forms are
the same for the Boussinesq and non-Boussinesq cases, the planforms differ as
shown. In the non-Boussinesq case, second order modes with k=k; tk;, n=1
are superposed with the critical modes (k=k; and k=k;, n =1). These second
order modes with n =1, which are forbidden by the Boussinesq symmetry, are
responsible for the difference in the patterns.



86

The calculation of linear stability

The stability of the solutions is of paramount importance, since only the
stable solutions are likely to be observed in the laboratory (unless the time

scale of the instability is very long).

Because the continuous symmetry causes zero eigenvalues, the definition
of structural stability in the presence of symmetry must be modified to say that
all eigenvalues which are not forced to be zero by the symmetry should have a
nonzero real part. Similarly, a stable solution has all negative eigenvalues,
except those which are forced to be zero by the symmetry.

An explicit calculation of the eigenvalues follows. The purpose of this is to
show that the stability can be calculated using the real system (2-45), (2-48), if
the proper changes are made to take the symmetry into account.

The linear stability of a state (z,,2,) is the same as the linear stability of
v(z,.25), where v is any element of the group of symmetries. All solutions can

be put into a canonical form, where the amplitudes are real, and

Iz1|2|22|20. (2'164‘)

Let an arbitrary perturbation of one of the steady states be

bz,
0z,
62, (2-165)
52,
The time evolution of the perturbation is given by
6z, bz,
d |62, . |62,
2 lozal =Y 5m (2-1686)
024 02,

where
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9z, 082, 8z, 03,
8z, 98z, 0z, 98z,
8z, 08z, 0z, oz,
0z, 9z, 09z 9z,
I=DU=1 s, 03, 02, 04, (2-167)
6z, o8z, 02z 9z,
0z, 0z; 02, 0%,
| 0z1 9z, 0Ozz 0z

The first row of this Jacobian matrix contains all of the information, since the
other rows can be obtained by the symmetries. However, it is simplest in this
case to compute the matrix explicitly, rather than use the isotropy subgroups

of the solutions, as was done in section 2.3.1. The Jacobian matrix is

{

!

A+2b |z, |?
+(a +b)fzz|2] bz,* (a+b)z,7, (a+b)z, 2,
A+2b |2, ]|?
bz ,? +(a+b)|zg2] (a+b)z,Z, (a+b)z,2,
J= A+2b Izglz . (2-168)
(a+b)z,2, (a+b)z,2, +(a.+b)|z1|2] bz,?
o ~ . A+2b | 25|®
| (a+b)z,2Z; (a+b)z,2, bz, +(a.+b)|z1]2])

The Jacobian matrix must be evaluated at the solutions to determine their

linear stability.

At the conduction solution {z; =2z =0), the Jacobian matrix is

AOO0ODO
_ OAODD
e = 00O (2-169)
000 A
and all four eigenvalues are A.
The roll solution, in canonical form (2-164), is
(z,=V4% 2, =0). (2-170)

The Jacobian matrix for this roll solution is
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bb 0O
a|® b 0O
JR=A 00a 0l (2'171)
000a
The eigenvectors of this matrix are
1 0 0 1
1 0 0 -
0 ' 1 y 0 » and 0 ’ (2'172)
0 0 1 0

which give the eigenvalues 2bA4%, aA4?, aA4? and O respectively.

The last eigenvector corresponds to a translation of the whole pattern in
the k, direction (or equivalently, a ¢, phase shift). When the amplitudes have

general phase, the infinitesimal phase shift is

2, 7:21
d El _ —'LEI -
To7| 22 0 (2-173)
22 Za=0 0

This is proportional to the null eigenvector listed above when z, is real.

It is easy to see why the translational symmetry forces the zero eigenvalue.
If a stationary solution is perturbed in a way that corresponds to a translation,
the new state is also a stationary solution. Therefore the perturbation will nei-
ther grow nor decay, and the eigenvalue corresponding to this perturbation is

Zero.

When the solution is unchanged by the translation, then there is a double
eigenvalue rather than a zero eigenvalue. For instance the rolls (with z,#0) are
invariant under the translation in the kp direction. The two linearly indepen-
dent perturbations of z,; and #,, or equivalently Re(z,) and Im(z,), each have

the same eigenvalue.

The Jacobian matrix evaluated at the square solution, when the amplitudes

are chosen to be real, is
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b b (a+b) (a+bd)
_ A% b b (a+b) (a+bh)
I5= S [(a+b) (a+b) b b |- (2-174)
(a+b) (a+b) b b
The eigenvectors are
1 1 0 1
1 1 0 -1
ap L |.and |, (2-175)
1 -1 0

These correspond to the eigenvalues {a +2b)A4%?, a4? 0, and O respectively. The
two zero eigenvectors are required because both translations change the

square solution.

This completes the analysis of the non-degenerate normal form for the

square and rhombic lattices. The feilowing table summarizes the results.

name definition amplitude eigenvalues
conduction | z;=2,=0 A*=0 AN A
rolls z,25=0, A%#0 | A®= :g‘— 2bA%, aA®, ad?, 0
squares |z,|%=]2,]%20 Az:ji\-_b_ (a +2b)A%, —ad?,0,0
2

Table 2-2. Solution data for equation (2-152). Note the similarity to table 2-1.

This table is the same as the table for bifurcation on the real plane with D,
symmetry. The additional eigenvalues in the complex system have no effect on
the stability of the solutions. Therefore, convection on the square or rhombic
lattice is equivalent to convection with the symmetry of the square in R%. The

phase portraits and bifurcation diagrams have already been drawn for the

equivalent real system so they are not repeated here.

The analysis of degenerate bifurcations in convection on the square or

rhombic lattice that follows will therefore be done using the egquivalent real
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system. When the results are applied to the convection, multiple or zero eigen-
values are added on according to the symmetry of the solution. In the notation

of section 2.3.1, the eigenvalues are:

conduction: X\, A, A, A (2-176)
rolls: o, 8, 8,0 (2-177)
squares: u+v, u—v, 0,0 (2-178)

If there is a solution with |z ,[®>|z,]|?>0, then it has two zero eigenvalues in

addition to the eigenvalues of the two by two Jacobian.

2.8. Degenerate Bifurcations with D; Symmetry

The technique used in this dissertation, local bifurcation theory, has the
disadvantage that the large amplitude behavior of the solutions cannot be stu-
died. One alternative is to use computers to study the stability of the large
amplitude solutions. Without resorting to numerical methods, the study of
degenerate bifurcations allows the analysis of finite amplitude bifurcations
using local methods. Technically, the bifurcations are at small amplitude,

although the results are often qualitatively good at quite large amplitude.

In a degenerate bifurcation analysis, the parameters of the system are
chosen so that two (or more) elementary bifurcations coalesce. The system, at
this special setting of the parameters, is called the organizing center. An
unfolding is the system obtained when the parameters are varied in a neigh-
borhood of the organizing center. The codimension of a bifurcation is the
number of different unfolding parameters needed to yield a structurally stable
family of vector fields. The bifurcation parameter X\ is an example of an unfold-
ing parameter. Nondegenerate bifurcations have codimension-one; degenerate

bifurcations have larger codimension.

There are two classes of degenerate bifurcations: first, the number of criti-

cal modes can be larger than one, and second, there can be degeneracies in the
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higher order terms.

In the presence of symmetry, more than one mode are often forced to go
unstable simultaneously. In convection, for example, all rolls with the critical
wavenumber are unstable at the critical Rayleigh number. This is a degenerate
bifurcation when the problem is considered in the context of vector fields
without the symmetry. In this dissertation, however, the translational sym-
metry is always assumed to be valid. In this context, the bifurcations con-

sidered so far are nondegenerate.

The degenerate bifurcations considered in this section are the result of
degeneracies in the cubic terms in the normal form (2-51) for bifurcations with
D, symmetry (the symmetry of the square). The results are directly applicable

to convection on a square or rhombic lattice.

Recall that for this problem the normal is
£,=z,(Aaz,?+bA%?), (R-179)
provided the following nondegeneracy conditions hold:
a#0, b#0, and a+2b#0. (2-180)
(see section 2.3.1.) When these conditions hold, the truncation of the normal
form at third order is justified. This normal form describes a codimension-one
bifurcation, defined by the condition:
A=0, (2-181)
This section describes the behavior of the system in the neighborhood of
the three degenerate cases. These are codimension-two bifurcations, and are
defined by the conditions:
A=0, b=0 (2-182)
in the first case,
A=0, a+2b =0 (2-183)

in the second case, and
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A=0, a =0 (2-184)
in the final case. The bifurcations will be discussed in the order listed above.

When one of the nondegeneracy conditions does not hold, enough higher
order terms must be added to the ODE to make it structurally stable. Then the
offending terms, which caused the normal form to be degenerate in the first
place, are reintroduced as unfolding parameters. This allows the local analysis
to include secondary bifurcations of the solutions which bifurcated from the
origin.

The fifth order terms are written here in two equivalent ways; this is done
for convenience in the analysis. In the neighborhood of the first two degen-
erate bifurcations, (2-182) and (2-183), the following fifth order truncation is
used:

£, =z, (A az P+ bAR+ Cr Pz %+ Dr 1+ Bz o%) . (2-185)
For the a ¥ 0 case the following is used:
.=z (A +azP+bA*+cAt+dx t+ex,?). (2-188)

The relationship between the two versions of the quintic coefficients is

=1
C=2c ¢=zC |
D=d+c}, or{d=D-2C}. (2-187)
EF=e+c e=FE-LC

2.8.1. The case where b 80

The degenerate bifurcation where b =0 is the simplest of the three cases
(2-182), (2-183), and (2-184). Note, from table 2-1, that A®*=—-A/b for the roll
solutions, and that one of the eigenvalues is 2bA4%. These results are not valid
when b =0, because the higher order terms which have been neglected become
important. Although these results are valid for any nonzero b, the range of

validity of the local analysis is |\| < 0(b?), which becomes very small when & is
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small.

One approach to degenerate bifurcations, described in Guckenheimer &
Holmes (1983), considers both A and & to be unfolding parameters in the neigh-
borhood of (2-182). The A-b plane is divided into regions by curves of
codimension-one bifurcations which meet at the codimension-two bifurcation at
A=0b=0. Within each of these regions, the qualitative nature of the system is
unchanged as the unfolding parameters are varied. The phase portraits are

drawn for each of the regions.

Another point of view, to be found in Golubitsky & Schaeffer (1984), treats
A as a distinguished bifurcation parameler, and b as the true unfolding param-
eter. Here the bifurcation diagrams, which plot the solutions as a function of A

are drawn for various values of the fixed unfolding parameter.

The approach used in this section follows Golubitsky & Schaeffer (1984).
The first step is to set b =0, and include enough higher order terms to make the
A-dependent family of vector fields structurally stable. Then, b is included as
an unfolding parameter. The bifurcation diagrams for fixed (small) b are then
drawn. These diagrams show a secondary saddle-node bifurcation of the rolls
which occurs at finite amplitude.

When b =0, the roll solutions grow without bound for A=0% in the third
order truncation. The only fifth order term needed to break this degeneracy is
Z,=Dz,°. The ODE is then

2, =z,[Ataz?+ Dz, + 0(z 222, 251 z5°) ] (2-188)
The other fifth order terms, %, z,z,%r,* and z,r,* do not change the ampli-
tude vs. Rayleigh number, or the stability, of the rolls.

The equation's for the amplitudes of the steady solutions are simple to

derive. The results are in the table below.
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The calculation of the stability involves the Jacobian matrix, which is

Atazg?+5D0r 4 2az,x,
J= .
2az,z5 A+az *+5Dx 4

When evaluated at the rolls, the Jacobian matrix is

4 DA% 0

JR= .
0 aAd?+0(AY)

The radial eigenvalue,

g
9ZL| Zapas,
9z, r

(2-189)

(2-190)

(2-191)

is negative when the rolls are supercritical, and positive when the rolls are sub-

critical. This is to be expected.
The Jacobian matrix for the squares is

0(4%) aA?
JS= .
ad®  0(A?%)

(2-192)

The eigenvalues of these matrices, and other bifurcation data, are listed in the

table below.

name definition amplitude | eigenvalues
rolls z,7,=0, A%#0 | A*= —_—z— 4DA%, aA®
squares | z,° =z,°#0 A?= :—EA aA?, —aA?

Table 2-3. Solution data for equation (2-188). Only the leading order in A? is
shown. The conduction solution is not included because the definition and sta-

bility properties are unchanged from table 2-1.

The unfolding

When a nonzero b is added to (2-188), the resulting unfolding is

£, =z, (A+az®+bA%+ Dz \*)+ - - -,

(2-193)

where b is the unfolding parameter. (As mentioned before, A can also be
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considered an unfolding parameter.)

The equation for the rolls is

A+bz ,2+Dz,*=0, (2-194)
which has the solution
a2= =2 t\/zlj—dcw ' (2-195)

where A® must be positive. If —b/ (2D) is positive, then the roll solution branch

undergoes a saddle-node bifurcation as it ‘“turns over' at

bE

=25 (2-196)

Asn

In contrast to the rolls, the amplitude of the squares is not changed

significantly when b is added (see table 2-1).

For the most part, the stability results of table 2-1 are valid when b is
small. The only eigenvalue which is modified significantly is the radial eigen-
value of the rolls, which is

0z,

a—z—=A+azgz+Bbzlz+5Dz14. (2-197)
1

When evaluated at the rolls, this is

2 4_ af b e .
2bA%+4DA* = 4DA (ZD+A ) (2-198)

The eigenvalue changes sign precisely where the branch turns over, and the
eigenvalue has the same sign as D at the larger amplitude. This is a secondary

saddle-node bifurcation.

The results are listed in the following table:
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name definition amplitude eigenvalues
—b £ Vb%—4AD b
— 2 2 - 2f B 42 2
rolls ,2,=0, A*#0 | A~ = oD 4DA (ZD+A ).a.A
squares | x,° =z5%#0 AR = :-2—)5- aA®?, —ad?

Table 2-4: Bifurcation data for equation (2-193).

The bifurcation diagrams, for fixed b, are drawn in fig. 2-13 for the case
where a <0. This degenerate bifurcation can also be described by two unfold-

ing parameters, as in fig. 2-14.

If b is not small the branch will turn over at such a large amplitude that
the fifth order truncation is non-rigorous. The analysis can predict qualita-
tively incorrect results when b is not small; the seventh order terms become
important, and modes which have been neglected become important at large
amplitude. However, one often knows from the physics that trajectories of the
system cannot go to infinity. This is true in convection, where the energy is
bounded (Joseph 1976). If the third order analysis predicts a subcritical bifur-
cation in these cases, one can argue that the branch must "turn over"” at some
larger amplitude. However, this branch might not be stable as shown in fig. 2-

13.



The bifurcation diagrams near b =0 97
.'i'l=x1()\+ax22+bA2+Dzllz1|4)
R
R R
g S
D<O
— c C C
R
R R
S S S
D>0
C C C
b <0 b=0 6>0

Fig. 2-13. The organizing center (b =0) and the unfolding (b #0, but
small) in the two cases where a <0: D <0 (upper row), and D >0 (lower
row). These cases are chosen because there are no stable solutions
predicted by the local analysis when a >0.

A _b?
R'Y))
D<O D>0
b & A=0 ®
b2
Agp = ——
4D

Fig. 2-14. The 2 parameter (A, b) unfolding space of the codimension-
two bifurcation at A=b =0. The ODE is structurally stable in the open
regions. The dividing lines are codimension-one bifurcations, which
coalesce at A=b =0 in a codimension-two bifurcation. There is a
saddle-node bifurcation at Agz,; at A =0 there is the nondegenerate bi-
furcation (b #0) described in the previous section.
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2.8.2. The case where a +2b &0

This case is almost identical to the degenerate bifurcation near b =0. The
difference is that, when a +2b =0, the squares rather th;«m the rolls bifurcate
vertically. The analysis is entirely analogous to the previous case, so only the
results are given, by way of table 2-5. For compactness, the unfolding parame-

ter is defined as

=L -
e=2a+b. (2-199)
name definition amplitude eigenvalues
rolls z,2,=0, A®#0 | A®= :bL— 2bA%, aA?
—g+Vg2C ReAR+(C+D+E)AY,
squares | z,°=z,%#0 AR= et 18 MC+D+E) ( 2 )
HC+D+E) —aA

Table 2-5. Solution data for equation (2-185) in the neighborhood of
£E= ;—a. +b =0. The conduction solution is unchanged from table 2-1.

The bifurcation diagrams near a +2b =0 are identical to those in the neighbor-
hood of b =0 (fig. 2-13), where D is replaced by C+D+E, b is replaced by &, and

the rolls and squares are interchanged.

2.8.3. The case wherea ~0
Recall that when a =0 the third order ODE has a whole circle of solutions.
All of the fifth order terms have an effect here. The degenerate fifth order nor-
mal form is
Z; =z, (A+bA%+cA+dz *+ex,y?); (2-200)
and the unfolding is
Z, =z (AMaz*+bA%+cAt+dz |t +ex,?), (2-201)
where a and A are both small.
In this section, the two unfolding parameters, A and a, are treated equally;

therefore the system with both parameters (2-201) is analyzed from the start.
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The behavior of {2-200) is obtained in the limit of a - 0.

The roll solutions have an amplitude given by
0=A+bA%+(c+d)A*, (2-202)
and the squares satisfy

0=A+(Lla+b)AZ+cAt+ i‘i—;"i)—At (2-203)

Since b #0, both of these solutions approximately satisfy

AZ= %+ 0(A*,a4?), (2-204)

and the solution branch does not turn over. (In other words, A® is monotonic in
A.)

When a #0, a new stationary solution is possible. To see this, use the same
procedure which showed before that no small amplitude solutions are possible
when a = 0(1). A stationary solution satisfies

0= zp%,—2 122 = 212p] @ (zoP~z \*)+(d —e )(z,*~z¢?) ] ( )
2-205
=z125(212-22%)| —a + (d—e)(z,2+2,2)].
Thus, there are solutions with z,?#z,% and z,z;#0. These new solutions satisfy

2= 2 -
AB= o=, (2-208)

and they only exist if A® is positive. The amplitude is independent of A, but the

solutions only exist in a small A interval, near A = —4%b.

These new solutions are called general solutions, since they have no sym-
metry. The amplitude of the general solutions can be inserted into equation
(2-202) for A? vs. A of the rolls, and (2-204) for the squares, to find the limits of
the A interval in which the general solutions exist. The general solutions inter-

sect the rolls at

b 2 (C+d)

B Pty Fa (2-207)

)\R=

The general solutions intersect the squares at
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= d+e
%= g gy (Fate)- ((dred, )(T‘gya—
_ b___ e [4(C+d)—(d+e)] (2-208)
B u(d"e) 4(d —e)?
The difference in the two A values is
s—AR= _‘.’:_2__@_*‘_?_2_ (2_209)

4 (d-e)?’
The equations for As and Az define two curves in the a-A plane. These two
curves are quadratically tangent at the origin; the general solutions exist in the

horn-shaped region between the curves.
Now the stability of the various solutions is computed. The Jacobian matrix
is

[M—(a +b)z%+bz 2 +cAt+dx ,Y+ex,t

2 2
+2z 2(b +2cA%+2dz 2) 2z ,z5(a+b +R2cA*+2ex,?)

( )z 2 2 4 4 4 (2-210)
At{a +b )z ,*+bx"+cA*+dx*+ex
2 2 1 2 2 1
2z,zs(a +b +RcA*+Rex*) +22,%(b +204%+2dz 7)
Evaluated at the rolls, the Jacobian matrix is
2A%[ b +2(c +d)A?] 0
dr= . (2-211)
0 A?[a—(d—e)A?]
The eigenvalues of the rolls are therefore
2bA%+0(4%), and 4%[a—(d —e)A?]. (2-212)

Evaluated at the squares,

A%(b +2cA%+dA®%) A%(a +b+2cAR+eA?)
Js= . (2'213)
A¥a +b+2cA%+eA®)  A®(b+2cAP+dAR)
The eigenvalues of the squares are therefore
2642+ 0(ad% 4%, and 4%[(d —e)4%-a]. (2-214)
The eigenvalues (2-12) and (2-14) are listed so that the first is the radial eigen-

value and the second is the tangential eigenvalue. Observe that the tangential

eigenvalues of the rolls and squares are equal and opposite, and that they
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change sign when (and if)

A% = E%e—>o. (2-215)

This is at precisely the amplitude of the general solutions. The stability of the
rolls (and squares) changes when they undergo a secondary pitchfork bifurca-
tion, which creates or annihilates a branch of general solutions. The two pitch-
fork bifurcations effectively transfer the stability between the rolls and

squares.

The next step is to find the stability of the general solutions. The Jacobian

matrix, evaluated at the general solutions, is

2z,%(b +2cA®+2dz,?)  z,z5[R(a +b)+4cA+dex ?]
Jo= . (2-2186)
2.z, 2(a +b)+4cAP+dex,?|  2z,2(b +2cAR+2dz,?)

The exact eigenvalues of this matrix are not easily found, except in terms of
messy square roots which are difficult to interpret. Fortunately, the eigen-
values can be calculated by a perturbative technigue because the radial eigen-
value is much larger than the tangential one. This relationship of the eigen-
values implies that

| Det Jg| <«<(Tr dg)?. (2-217)

Thus, the eigenvalues of the two by two matrix (2-216) are

Det J(;
Trdg+ 0[—,1,;3: , and
(2-218)
Detdy [(Detldg)?
Trig (Tr Ig)3
The trace of Jg is
Trdg = 2bA%+4cA*+4d (z,*+22*) =2bA%+0(4%). (2-219)

The calculation of the determinant is somewhat more involved. When a is elim-

inated in favor of (d —e)Az. the determinant of Jg is
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Det Jg = 4(e —d )(e +d )z 2z, (z 2 —z2)%. (2-220)
The inequality (2-217) can now be verified explicitly. From equation (2-218),
the eigenvalues of J; are
2bA%+0(A*), and
( (2-221)

—2(d—e)(d+e) T,%24(z,2-2%)°
b . A2

+0(AY).

Note that the tangential eigenvalue of the general solutions does not change

sign as @ and A are varied. Information on the solutions is summarized here.

name definition amplitude signs of eigenvalues

- 2

rolls T,x,=0, A®#0 | A®= __+_SQ‘_)_ b, a—(d—e)A?
— 2

squares | z,°2=z,°#0 4% = A0 b, —a+(d—e)A®
(La+b)

2
general | O#z,*#z,°#0 | A®= d‘_‘_e b, iii;e%ggie_l

Table 2-6. Solution data for equation (2-201).

This completes the calculations needed to draw the phase portraits in the
various regions of the a-A plane. The plane is divided into regions by the three
curves:

A=0, A=2Ag, and A=As, (2-222)
where the curves Ag and Ag are given in equations (2-207) and (2-208). These
two curves define the horn shaped region where the general solutions exist; this
region extends into only one quadrant of the A-a plane because of the restric-
tion

Aa“:%\“)o' (2-223)

which implies that
sgn(A) = —sgn(b). (2-224)

Fig. 2-15 shows the a-A plane for certain cases of the other relevant
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parameters:

b, (d-e), and (d+e). (2-225)
When any of these combinations of parameters is zero, the system is degen-
erate, and yet higher order terms are needed. The coefficient ¢ is not impor-
tant here because it contributes the same curvature to the As and Ar curves.

Fig. 2-16 shows the phase portraits in the z,-z; plane.

Fig. 2-15, with (d +e) <0, is similar to the results of Frick & Busse (1983) for
convection in a highly non-Boussinesq fluid. The ratio of the viscosity at the
top and bottom boundaries measures how non-Boussinesq the system is. They
find that the preferred solution changes from rolls to squares as the viscosity
ratio exceeds a critical value. In other words, a =0 at the critical viscosity
ratio. Near this critical value, the departure from the critical viscosity ratio is
proportional to @, and the Rayleigh number is proportional to A. Frick & Busse
find that rolls and squares are both stable in a wedge shaped region, as in fig.

2-15 with (d +e) <0.
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A= Ar stable

A =As unstable general
general solutions
solutions
1 stable
1 B rolls A= Ag
stable A=A
rolls stable
stable I
v squarcs v squares
A=0 A=0
I 1
(d+e)>0 (d+e)<0

Fig. 2-15. The division of the a-A plane for equation (2-200), with the parame-
ters b, ¢, d, and e fixed: b <0 and (d~e) <0. In the left figure, (d+e)>0, and
the general solutions are unstable in the horn-shaped region. In the right
figure, (d+e)<0, and the general solutions are stable. The parameter ¢ has no
qualitative effect on the phase portraits. The general solutions only exist inside
the horn-shaped region. The rolls and squares undergo a pitchfork bifurca-
tion, creating a branch of general solutions, at A =Ag and A = As, respectively.

f‘lg. 2-16. The phase portraits in the T -z, plane, corresponding to the regions
in the a-A plane shown if fig. 2-15 above. The only difference in the two cases
(d +e')> 0 and (d+e) <0, is the stability of the general solution in region III The
solution types are: conduction (C), rolls (R), squares (S), and general (G) .
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The bifurcation diagrams

The bifurcation diagrams plot A? as a function of a single parameter. This
parameter can be thought of as the knob that the experimentalist turns. As
the parameter is varied, the coefficients A, a, b, etc. will change in general
When the system is near A=a =0, the variations in & and the higher order
terms are insignificant, as long the nondegeneracy conditions below hold:

b#0, d+e#0, and d —e #0. (2-226)

As the experimental parameter (e.g. F—F,;) is varied, the system follows a
path in a-X\ space. It is assumed that A increases monotonically with the exper-
imental parameter, so that the experimental parameter can be rescaled (with a

shift of origin) to be precisely A.

The path through A-a space is therefore
a =ap+trai+ - - - (2-227)
The bifurcation diagrams plot A® vs. A for this path. Thus, A is the distinguished
bifurcation parameter, and ag is the unfolding parameter; in this way, the two

dimensional unfolding space is broken up into a series of lines.

For a fixed set of parameters b, d, and e, the bifurcation diagrams are

qualitatively different in the two cases:

1) ay> ———. an
(1) 2> £=%, and
(2-228)

.. d -
(ii) a;< —be .

This difference is because a, is the slope of the path in a-A space, and (d—e)/ b
is the asymptotic slope of the horn in which the general solutions exist (see fig.

2-17).
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Fig. 2-17. One-parameter families of paths through a-\ space, near a =A=0.
The horn-shaped regions are those of fig. 2-15. The arrows indicate paths,
defined by @ =ao+Aay, where A is varied and ao and a, are fixed. The parameter
which labels the path is ap. The bifurcation diagrams plot the solutions as a
function of A for these paths. As far as the bifurcation diagrams are concerned,

all that matters is the slope of the paths {a;), relative to the opening slope of

the horn-shaped region, (Qi—;i)—

cated, for (d —e)>0 and & <0.

). The two cases of equation (2-228) are indi-

When the slope of the path in a-\ space is not vertical (i.e. a;#0) the gen-
eral solutions do not exist at a unique amplitude. Equation (2-2086) is replaced

by

A?= +0(A%). (2-229)

d—e+aib
The significance of d —e +a,b is clear from equation (2-228).
Following the sloped paths, the difference in the endpoints of the X\ interval

where the general solutions exist is

ao? (d +e )d—e)
4{d—-e+ab)? (d-e+a,b)

As—Ag = +0(agd). (2-230)

Comparing equations (2-208) and (2-209) with equations (2-229) and (2-
230), respectively, one finds that the following two ODEs have qualitatively the
same bifurcation diagrams:

£, = :z:1[}\+(ao+)\a1)z22+bA2+cA4+dz14+ezz“] , (2-231)
and
=z (A ragz P+bA%+dz 143z ,), (2-232)

where
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d-8=d—e+ab ( )
2-233

5= _(d-e) _

d+e—(d+e)(d—e+alb) .

Thus, all of the possible bifurcation diagrams can be obtained by considering

paths in a-A space where a is a constant.

Singularity theory gives a technique for showing that two systems, such as
(2-231) and (2-232), are equivalent as far as the bifurcation diagrams are con-
cerned. While such a proof has not been done here, the above analysis suggests
that (2-231) may be a singularity theory normal form, provided

d-2#0, d+%#0, and b #0. (2-234)

Note that (d +e )(d —e) =(d+%)(d—¥); as a result the stability of the general
solution is the same for the two systems (2-231) and (2-232). This is of course
necessary because the path through a-A space cannot effect the stability of the

solutions.

The result of this section is that the original normal form (2-201) can be
used to generate all of the bifurcation diagrams, where a, d, and ¢ represent
ag, zﬁi. and ¢; this is done in figs. 2-18 and 2-19. Fig. 2-18 shows how the d-e
plane is divided into four regions by what could be called the super nondegen-
eracy conditions: d +e #0 and d —e #0. The bifurcation diagrams are drawn in

fig. 2-19 for various fixed values of the parameters.

In addition to the nondegeneracy conditions listed above, a further division
of the d-e plane is needed to distinguish between the cases where the rolls
have larger amplitude than the squares, and vise verse. To see this, consider
the case where a =0: The difference in amplitude of the two branches, at a fixed

value of A, is
(4%)g—(AR)g = @%)-AH 0(49%). (2-235)

When a#0, the relative amplitude of the rolls and squares is given, at small
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amplitude, by the initial slope of A% vs. A. The two branches have the same

amplitude when

2a

A= Ga=ey

(2-236)
if this expression is positive. This result is found by eliminating A from equa-

tions (2-202) and (2-203). For amplitudes larger than O(a), the relative ampli-

tude agrees with the a =0 case, given by equation (2-235).

The difference in the bifurcation diagrams, depending on the sign of
(3d —e), is'not independent of coordinates. Therefore one should not include
(3d —e) as a nondegeneracy condition. To see this, consider the following near
identity change of variables:

T, z,+az,r?

o 22+a12212, (2-237)

which implies

A% > A%+2ax Rz . (2-238)
This change of variables preserves the symmetry and yet can change the rela-
tive amplitude of the squares and rolls; it adds an O(A%*) correction to the

squares, but leaves the rolls unchanged, since

(4%)p > (49, and

(4%)s > (4%)s+ La(4%)s. (2-239)
The initial slope of A® vs. A is not changed by this, or any other, near identity
change of coordinates which preserves the symmetry of the vector field. In the
nondegenerate bifurcations considered here, the solutions all have different

slopes; therefore the relative amplitude (at small enough amplitude) is invari-

ant under coordinate changes which preserve the symmetry.
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d+e =0

Fig. 2-18. The bifurcation diagrams of the normal form (2-201) depend on the
coeflicients a (which is considered the unfolding parameter), b, d, and e. This
figure shows how the d-e plane is divided into four regions by two of the nonde-
generacy conditions: (d +e)#0, and (d —e )#0. The relative amplitude of the roll
and square solutions also depends on the combination {(3d —e); thus regions Il

and IV are subdivided. The normal form is not degenerate, however, when
(3d —e)=0.
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d+e <0
d-a <0
3d -e <0
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d+e <0
d—e >0 G
3d-e <0
R R
S s
iV, s e
d+e <0 ,//
d-e >0 %
3d-e >0 G

Fig. 2-19. The bifurcation diagrams {(4? vs. A< R—FR,) for the normal form (2-
201). In each row, the coefficients d and e in the normal form correspond to the
six regions of fig. 2-18, and b <0 in all the diagrams. The three columns are for
a <0 (but small), a =0, and a >0, respectively. The general solutions {G) con-
nect the rolls (R) and squares (S). The zero amplitude solution is conduction.
As usual, the thicker lines indicate stable solutions. The difference between the
diagrams of regions II, and Il; only concerns the relative amplitudes of the roll

and square solutions. This difference is not invariant under near identity coor-
dinate transformations.
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2.9. Convection on the Hexagonal Lattice

The hexagonal lattice is different than the other lattices because there is a
third critical amplitude; the normal forms are ODEs in three complex variables.

The most convenient choice for the third critical k vector is kg = —(k; +kz).

k,

[ ] kl

The third amplitude will be called 24, so that a typical field is
P(x) = [z 1e“‘""+z29“‘“"4—zaem"“"+c.c.] , (2-240)
where the c.c. represents the complex conjugate of the proceeding terms.
The translations cause a phase shift of the amplitudes
(21, 25 2g)~» (eik‘dzl. eikedzz, eiksdzs) . (2-241)
All of the rotations (2-119) can be obtained by composing one or more of the

following: a reflection across the k,; direction,

(21, 22, 23) » (2, 23, 23), (2-242)
the 180° rotation,

(21, 22, 23) » (2, Za, Z3), (2-243)
and a 120° rotation,

(21, 22, 23) » (22, 23, 21). (2-244)

When the Boussinesq approximation holds and the boundary conditions are
symmetric, the partial differential equations have the symmetry (1-159)-(1-
161). The critical amplitudes reverse sign under this transformation, and

therefore the normal form has the symmetry
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(2., 22, 23) > (2, 25 23) (2-245)
in the Boussinesq case. If it holds, this symmetry forbids of all even order

terms in the normal form.

The symmetry group formed by all compositions of (2-242), (2-243) and (2-
244) is called I',, the “nonsymmetric” symmetry group. When the Boussinesqg
symmetry (2-245) is added, the symmetry group is called Iy, the “symmetric”
symmetry group.

The determination of the most general equivariant ODE proceeds as in the
square or rhombic lattice. The general term in the Taylor expansion can be
written as

2~z Mg gt g,y M g, (2-248)
It is helpful to separate the largest possible factors of |2,|? |23|?% and |23]?
from the other terms, since they are invariant under translations. The Taylor
expansion involves only positive powers; however, using the convention
z-Inl=zInl, (2-247)
one can write

zlnl Elmlszl(nl—ml)(‘21|2)max(n1,ml).

{2-248)
Therefore, in place of equation (2-246), the general term in the Taylor series
becomes
Zy~zy t2p Py o f (213 222 | 25]?), (R-249)

where n | replacesn,-m,.

It must be remembered that n, can be negative in equation (2-249), and
that a negative exponent is interpreted as the positive power of the complex
conjugate. For instance,

- 2 _
z,3(|z1|2) Ez12215- (2-250)

The equivariance under translations for the general term (2-249) gives
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oIl _ i(n Ky denglydingkyd) (2-251)
One of the k vectors can be eliminated using kg = —k; —ks:
ot ilnonom dr(ngngd] (2-252)

This is true for all d, which implies that

l=n;-ng

0=n2_n3. (2-253)

This is a system of two equations for three integers, so there is a one parameter

family of solutions:

n;=n
nag=ng=n-1. (=-254)
Thus the most general [';-equivariant vector field can be written as
2= ), 2" (2z223)" ' fn(l2.1]% | 22|13 | 23]%), (2-255)
n=—oo
and the most general ['y-equivariant vector field as
2= ), 21" (z229)" 1 fn(l2,[3 253 [25]9), (2-258)
n=—oa
n odd

where the functions f, are real-valued due to the complex conjugation sym-
metry (2-243), and symmetric under interchange of 2z, and zg:
FniRESR: fr(lz ]2 12217 [23l®) = Fall21]% | 25]% |2217).  (2-257)

The equations for 2, and z4 follow from the permutation symmetry (2-244).

Using the convention (2-247), the prefactors of f,, are

z (2,2025)""! forn=>1.

2" (2p23)" 1= (2-258)

Z,24(Z,2,23)!"! forn<0.

In Buzano & Golubitsky (1983) and Golubitsky ef al. (1984) the equivariant
vector fields were written in a different, but equivalent, way. They wrote the
general equivariant vector field as a module over the ring of invariant func-

tions, so that singularity theory could be used. The present approach does not
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require this special form of the equivariant ODEs, however. Nevertheless, it is
convenient to define
q =2,2323t2,2,23. (2-259)
Note that ¢ is invariant under all of the symmetries in I';,. Buzano & Golubitsky
(1983) showed that the most general equivariant vector field is
z,=2,9(q. |2,1% | z21% |25]?)+Z2Z3h (g. | 2,]% |22]% |25]|?), (2-260)
where the functions g and h are real valued and symmetric under the inter-
change of 2z, and zg. As before, 2; and 23 follow from the cyclic permutation
symmetry (2-244).
When the Boussinesq symmetry holds, only odd power terms are allowed in
the I';-equivariant ODE, which can be written as
z2,=2,9(q% |2,1% |22|% |25]%)+Z,259 R(q? | 2,12 |2,/ |25]%). (2-261)
The complex nature of the amplitudes is essential in the hexagonal lattice,
unlike the square or rhombic lattices. The important function is the sum of the
phases,
=g, tp2teg. (=-262)
where
za=z.e"%, a=1,23. . (2-263)
This combination of the phases is invariant under translations, since
Yo Patked (2-264)
$ > o+ (k;+ko+kg)-d=9. (2-265)
There are three phases and two independent translations, so there is only one
invariant function of the phases, namely &.
If at least one of the amplitudes is zero, then the remaining amplitudes can
be made real by a suitable choice of the displacement d. In this case the phase

¢ is undefined.
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In the first form of the equivariant ODEs (2-255), all the terms with n#1
cause a nonzero time derivative of the phase. The second form, (2-260) or (2-

261), has the advantage that only the h term effects the phase;

52’1 = E;mz—('z"lé'z'z‘s—z 12223)}1 (2"266)
1
in the non-symmetric case (I', ), and
¢l (Elizis_z IZZZa)q E (2"267)

e

in the symmetric case (T').

2.9.1. Truncations of the ODEs

There are three different truncations of the most general equivariant ODE
which are applicable in different cases. When writing the truncations it is con-
venient to use

A%=|z,|%+| 2,2+ 25]%, A*=(4%)". (2-268)
As in the square and rhombic lattice cases, A? is proportional to the convective

heat transport.

(1) Truncating the general ODE at third order gives
ir=z [ A+a(]zz|?+|2g]?) +bAR | +eZ5Z g, (2-269)
where a, b, and ¢ are real. Note that when one of the amplitudes is zero, say zg,

this is identical to the normal form for convection on the rhombic lattice.

The results of Buzano & Golubitsky (1983) imply that this truncation is
structurally stable provided

e#0,and b#0. (2-270)

However, in this case there are no stable solutions in the neighborhood of the

origin. There are stable solutions at A% = 0(&?), but these are outside the range

of validity of the truncation. The higher order terms which have been

neglected are important at this larger amplitude.
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() When ¢ is perturbed from zero, stable solutions are captured by the
local analysis. In other words, the stable solutions exist for small enough &.
Busse (1962, 1967) analyzed this system for the parameters relevant to Bénard
convection {(a < 0,b < 0). Although Busse's analysis correctly identifled all of
the stable solutions in this case, Buzano & Golubitsky (1983) found that this
third order system must be modified to include fourth and fifth order terms
when ¢ is in the neighborhood of zero. The important higher order terms are
those which effect the phase. Adding these gives

Z2,= zl[)\+a(]zz]2+ ]z3|2)+bA2]+22§3[s+d([ z5|%+|23]%)+ed?+c g ] . (2-271)
This is a normal form of the degenerate bifurcation (with codimension-two) in
the neighborhood of A=0, ¢ =0, provided the following nondegeneracy condi-

tions hold:

a#0, b#0, a+2b#0, 2a+3b#0, ¢c#0,
a+3b#0, a+6b#0, d#0, and 2d+3e#0.

(2-272)
The normal form found by Buzano & Golubitsky (1983) includes another
fifth order term,

Z,~2,A*, (2-273)
although this term has no effect on the qualitative behavior of the solutions.
furthermore it is not required that the coeflicient of this term in nonzero.
Buzano & Golubitsky (1983) used singularity theory, and showed that all the
higher order terms can be transformed away, using a more general transforma-

tion of the domain (z,) and range (2,) than that used here. From the struc-

tural stability point of view this term is not necessary.

The nondegeneracy condition 2d+3e#0 requires that the fourth order
terms are nonzero. Therefore the normal form (2-271) with the nondegeneracy
conditions (2-272) is not applicable when the Boussinesq symmetry (2-245)
holds. There are physical circumstances, however, where it is natural for the

second order terms to vanish, even though the fourth order terms are nonzero.
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The most notable such case is when the boundary conditions are different on
the upper and lower boundaries, although the Boussinesq approximation is
valid. In general, when the linear problem is selfadjoint the quadratic terms
vanish, even without the vertical symmetry. According to Busse (1962), this was

shown by Lortz in his dissertation.

The previous paragraph points out that the Boussinesq approzimation
does not necessarily imply the Boussinesq symmetry (2-245). The boundary
conditions must be symmetric as well. There are many ways in which the Bous-
sinesq symmetry can be broken, some of which are listed in Golubitsky ef al.

(1984).

(3) When all of the symmetry breaking terms are small, the bifurcation has
codimension-three, and the normal form is equation (2-271) in the neighbor-
hood of

A=0, £¢=0, and 2d+3e =0. (2-274)

The nondegeneracy conditions are
a#0, b#0, a+2b#0, 2a+3b#0, and c#0. (2-275)
Note that the nondegeneracy conditions only require that odd terms are
nonzero. The Boussinesq symmetry can hold at the organizing center, where
¢ =2d+3e =0. Thus, the normal form (2-271) allows the study of symmetry
breaking, where the unfolding parameters ¢ and 2d+3e are the symmetry
breaking terms. This normal form was found using structural stability argu-
ments in Golubitsky et al. {1984), but the singularity theory analysis has not

been performed for this case.

In the Boussinesq case, only odd power terms are allowed in the normal
form. The first term which effects the phase & is fifth order, so the simplest

candidate for a normal form is
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2=z, [Ara(lz,]2+]25]|?) +bA% | +cZ 25 . (2-278)
This is indeed a normal form, based on structural stability considerations
{Golubitsky et al., 1984). The nondegeneracy conditions are

a#0, b#0, a+2b#0, 2a+3b#0, and ¢c#0. (2-277)

The scaled normal forms used in Golubitsky et al. (1984), are
g, =2, (~Ao+agA?+ |z, |2+ Z,24(—sc+boAR+ |2, R +caq), (2-278)
in the nonsymmetric case, and
z2,=2,(-Ag+agA®+|z,|?)+ceZ,25q , (2-279)
in the symmetric case.
To arrive at the normal form (2-279), Golubitsky et al. used the fact that
a #0, which is one of the nondegeneracy conditions, to set @ = —1 by scaling the
variables. In going from the unscaled equation (2-276) to the scaled version,
first the direction of time is reversed if a >0, and then the amplitudes are

scaled by

za
Z, —=2 (2-280)
V IG.

The ODE is then in the form (2-279), with

Ag = —sgn(a )\
. =_(E£_‘.’_ (2-281)
-
cg= ———.
a

The time can then be scaled (with a positive scale factor) to set c¢ = +1, but

this is not pursued here. The details are in Golubitsky et al. {1984, p. 264).

In the non-Boussinesq case, Buzano & Golubitsky {(1983) used the two scal-
ings ( z and t) to set @ =~1 and d =—1. The coefficients of the scaled normal

form are obtained from the unscaled normal form as follows:



119

|FJ

=-(%2
_(d

sgn(Aa) = —sgn(a A) (2-282)
sgn{eg) = —sgn(d &)
sgn{cg) =sgn(a c).

)

e
|+ ~)

The results of the analysis in the present notation can be applied to the

normal forms in the notation of Golubitsky et al. by letting

=—A¢
& =—£E¢
a=-
b=ag+l (2-283)
c =cg
=-1
e =bg+1

The notation used here is chosen because it directly conforms to the
results of the calculations of Chapter Four. When the coefficients of the normal
forms are calculated, it is preferable nof to use the scaled version of the nor-

mal form for comparison.

2.9.2. The subspace of equal amplitudes

The three complex amplitudes in the ODEs can be quite cumbersome. The
analysis is simplified by the restriction of the ODEs to two invariant subspaces:
the equal amplitude subspace and the real subspace. The equal amplitude sub-
space is discussed in this section and the real subspace is discussed in the next
section. One can show that all of the small amplitude solutions of the normal
forms are in one {(or both) of these invariant subspaces.

The equal amplitude subspace is defined by

|z1]%=|z2]%= | 23] (2-284)
It is convenient to choose the origin of the fluid layer so that all of the phases

are equal;
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2,=2z=23=2z =re‘?, (2-285)

& =3¢, (2-2886)

where ® has been defined in equation (2-262). Thus, the equal amplitude sub-
space can be identified with a single complex number, z. With these phases it is
trivial to verify that the subspace of equal amplitudes is invariant:
21| (2 22,229 = 22l (2,222 = 23| (2, =2p=2q) - (2-287)

A solution of the ODEs which is in this subspace is called an equal ampli-

tude solution. The possible equal ampiitude solutions are listed below:

® Hexagons (H¥)

$=0 (HY)
|z, 128 =]2z5]%= |24, [@:n (H-)] (2-288)
® Triangles (T)
|2,|2=2,]|%=]25[%, ®#0, =m (2-289)
® Regular Triangles (RT)
2,12 [22]2=|25]%, &= % .. (2-290)

The heragons come in two types: the flow can be upward (H*, $=0), or
downward {H™, ® =7), in the centers of the hexagonal cells. The other patterns
are called triangles, following Buzano and Golubitsky (1983), due to their sym-
metry. In the Boussinesq case the regular triangles, defined by & = + v/ 2, have
more symmetry than the other triangles.

The flow pattern and temperature distributions of the equal amplitude
solutions are shown in fig. 2-20. The shadowgraph visualization used is the

same as that used in fig. 2-12.
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Fig. 2-20. The equal amplitude solutions: the hexagons, regular triangles, and
triangles. The solutions are parametrized by the angle & (see equations (2-285)
and (2-286)). Three different methods of visualization are used. The leftmost
column shows the hot and cold regions, using the shadowgraph technigue used
in fig. 2-12. The center column shows the paths of the fluid particles on the
upper (free boundary) surface. The right column shows a perspective drawing
of the pattern of the hexagons and regular triangles, where the dark circles
represent upwelling and the open circles represent downwelling fluid.
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Often, the Boussinesq approximation is not valid because the viscosity
depends on temperature. In this case, the hexagonal pattern with the larger
viscosity in the centers of each cell is stable. In liquids, the viscosity tends to
increase with temperature, and in gases, the viscosity decreases with tempera-
ture as a rule. For this reason, Busse (1962) has named the two types of hexa-
gons, H* and H7, I- and g;hexagons, respectively. The +/ — nomenclature comes
from the sign of the amplitudes when they are chosen to be real:

x>0forH+.]

21722723712, {z<0forH'. (2-291)

The most general I',-equivariant ODE (2-260), restricted to the equal
amplitude subspace, is
z=zg(q, [2[®)+2°r(g. |2 |?), (2-292)
and the most general I's-equivariant ODE (2-261), restricted to the equal ampli-
tude subspace, is
z=2g(q% |2 |®)+2%q R(g% |2 |?). (2-293)
The symmetry of (2-260) is the 6 element group Dy, generated by

2z »e®"/35  and
z2->Z. (2-294)

This is the symmetry of an equilateral triangle in the plane. The symmetry of
(R-261) is the 12 element group Dg, generated by the above transformations and

z - —z. (2-295)
This is the symmetry group of a regular hexagon in the plane. It is worth noting
that the two types of hexagons are identifiled by the symmetry z » —2 in the
Boussinesq case. Therefore, if hexagons are preferred in a symmetric system,
then the initial conditions determine whether H* or H™ are observed. There

would most likely be many defects in such a pattern.

One-dimensional invariant subspaces are important because the solutions

are defined by a single equation. It is much simpler to solve a single nonlinear
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equation than six coupled nonlinear equations. The lines of reflectional sym-
metry in the complex plane are one-dimensional invariant subspaces of the full

phase space. In the non-Boussinesq (D3) case the lines
¢=o,tgg:t%?,[Le.mn@=0]. (2-296)

contain the hexagons. In the Boussinesq (Dg) case there are additional lines of

reflectional symmetry,

(2-297)

Fig. 2-21. The symmetries of the triangle {D3) and hexagon (Dg) in the plane.
The dotted lines represent lines of reflection, and the curved arrows indicate
proper rotations.

2.9.3. The real subspace

An important invariant subspace of C3is the real subspace, defined by
sind =0 if z,2,253#0, or (2-298)
z,2223=0. (2-299)
The reason for the name is that all three complex amplitudes can be made real
by some translation (x> x+d). The proof consists of two parts: (1) If all of the
amplitudes are nonzero, then ¢ is defined. Two of the phases can be made zero

by a choice of the origin, therefore the third phase is &, If =0 or m, then all of
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the amplitudes are real. (2) If z,z,25=0 then at least one of the amplitudes is

zero, and the remaining amplitudes can be made real by a translation.

The real solutions are an invariant subspace. When 2z,2z,23#0, the general
equivariant ODE (2-260) implies

hy h, hg

+ + . (2-300)
lzy]% |2zgl?  |2zs]?

<i3=—sin¢?|zl| Izzl Iza]

where hy=h(g? |z11% |22|% |25]%), ha=nR (g% |22]% |25]% | 2,]?), etc.
When 2,2,23=0 the above argument breaks down. If exactly one of the
amplitudes, say 23, is zero at £ =0, then the ODE is

Z2,=2,9,
Zg=23f2 (2-301)
Z.sziz_z—ah.a.

However, if 2, and 23 are real, then 25 {(and thus zg3) are real and nonzero for

t =0* unless h =0. In any case the solution remains on the real subspace.

There are some one-dimensional invariant subspaces which are real. The
most important is the space of rolls, where only one amplitude is nonzero. The
rolls can be put in the following canonical form:

© Rolls (R)

z,eR, z3=2,5=0. (2-302)

® Hexagons (H*)

z,=2=2zgeR. (2-303)

In the Boussinesq case another one dimensional subspace is defined by the

(Boussinesq) rectangles, or patchwork quilt solutions, which can be put in the

form

® Boussinesq Rectangles (RA)
z,=2eR, 23=0. (2-304)

(When the Boussinesq symmetry holds, and 2z ,z,23=0, then h3=g¢R3=0 in equa-
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tion (2-301).)

In the non-Boussinesq case there are small amplitude solutions in a two-

dimensional invariant subspace which can be put in the form:

» Non-Boussinesq Rectangles (RA)
Z1=23#23, =0 or 7. (2-305)
Fig. 2-22 shows the planforms of the different non-Boussinesq rectangles. Note
that all of the previously mentioned real solutions, the rolls, hexagons and

Boussinesq rectangles, are special cases of the non-Boussinesq rectangles.
When |zg| <|2z,| =]|2zz|, the non-Boussinesq rectangles on the hexagonal
lattice are very similar to the non-Boussinesq rectangles on the rhombic lat-
tices (see fig. 2-12).
The symmetries of the ODEs, restricted to the real subspace, are discussed

in Swift (1984) (Appendix B).



128

(PQ] Paj — .
A,1 a '
< —.
A=y BN
< .- >
< YQ ) >
o A-1
A-1 TN ] 7
('] 1 J) ’
v 4
A_32 ',"4“§
A-2 A-2 A
A's'z

Fig. 2-22. The real solutions on the hexagonal lattice. The methods of visualiza-
tion are the same as those of the first two columns of fig. 2-20. The real solu-
tions are parametrized by the ratio of amplitudes,
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A= —, wherez;=1zxj3.
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2.9.4. The analysis of the Boussinesq normal form

The Boussinesq normal form is simpler to analyze than the other cases, so

it is done first.

The analysis of the Boussinesq normal form is done in two steps; first the
invariant subspace of equal amplitudes is analyzed, and then the invariant sub-

space of real amplitudes is analyzed.

The equal amplitude subspace (Dg symmetry)

The ODE for the equal amplitude solutions is obtained from equation (2-
276). In terms of polar coordinates, this is

T =r[)\+(2a +3b )7‘2]+c r%cos?(3¢). (2-3086)
@ = —cr*sin(Byp) (2-307)
Therefore, there are only two types of solutions; the hexagons (6¢ =0, mod 2m)
and regular triangles (B¢ =, mod 2r). The other triangles cannot be station-
ary solutions except at larger amplitudes, where the seventh order terms dom-

inate the fifth order term.

The amplitude (r?) of the hexagons or regular triangles is determined by
7 =0, which implies
A+(2a +3b)r*+2¢c r?cos?(3¢) = 0. (2-308)
When (2a +3b)#0, the amplitude is

2 —A AP

= - 2 -
™= Bat8D) (2a+30)7 2c cos?(3y), (2-309)

where

1 for hexagons.

0 for regular triangles. (2'310)

cos?(3¢) =

The stability of the solutions is determined by the eigenvalues of
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or o7
or Oy

J= 8p 09 (2-311)
or Oy

A computation shows that the off-diagonal elements of J are proportional to
sin(6¢). The hexagons and triangles are on the lines of reflectional symmetry,
where sin{(B¢) =0; therefore J is a diagonal matrix when evaluated at the sta-
tionary solutions. As a consequence, the two eigenvectors are in the radial and
tangential directions. The radial eigenvalue is

%:Tz)\+(2a+3b )3r2+0(rt) (2-312)

=2(2a +3b)r%+0(r?). (2-313)

The last step follows when the expression is evaluated at the solution. The
phase eigenvalues for these solutions are

. —2cr® for hexagons.
9 - _» cr?cos(Byp) =

5 (2-314)

2 cr® for regular triangles.
Note that when the equal amplitude solutions are supercritical (i.e.
(2a +3b) <0), then the one with the larger amplitude has the negative (stable)

phase eigenvalue. This completes the analysis of the Dg normal form.

The real and imaginary subspaces
In the Boussinesq case, the imaginary subspace, defined by
= tg- if 2,2223=0, or (2-315)
2,2523=0 (2-3186)
is invariant, as well as the real subspace. Thus, there are two different three-

dimensional invariant subspaces. The hexagons are in the real subspace, and

the regular triangles are in the imaginary subspace.

The only differences between the hexagons and regular triangles are due

to the fifth order term which has been analyzed in the equal amplitude
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subspace. In the analysis of the real subspace, it is suflicient to truncate the
normal forrn.(2-276) at third order. The imaginary subspace yields the same
third order truncation. There is no difference between the hexagons and regu-
lar triangles at third order.

The analysis of the invariant subspace of real solutions begins by setting
2,=z, to accentuate the fact that the amplitudes are real. The ODE (2-278),
evaluated at the real subspace, and truncated to third order, is

iy =z, [ A+a(zf+zs?)+bA%]. (2-317)
The fifth order term is unimportant here.
The two types of real solutions present at small amplitude in the Bous-

sinesq case are:

® Rolls (R)
A2 = :%__ (2-318)
* Boussinesq Rectangles (RA)
2_  —A
AP= +——, and (2-319)
~a+b
2
® Equal amplitude solutions (H%, T)
—-A
A% = ——. 2-320
Sa+b ( )

Three of the eigenvalues of these solutions can be calculated using the
third order truncation in the real subspace. In going from the real system to
the complex system, three eigenvalues must be added. The phase eigenvalue of
the equal amplitude solutions has already been calculated for the Dg system.
All of the other eigenvalues can be calculated on the real subspace. After the
calculation, zero eigenvalue(s) must be added and some eigenvalues have multi-
plicity two. due to the continuous symmetry. The technique for doing this has

been discussed in section 2.7.1.
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The Jacobian matrix of the real system (2-317) is

( \
9%, 0z, 0z,
62:1 622 62:3

82, 0z, 0,

2-321
6.'1:1 6.’52 6.’53 ( )

J=Df =

8ty 0Bfg O%g

621 6.’32 623‘
\

where the z; are real.

The fifth order term has been neglected because it only causes an 0(4*)

correction to the eigenvalues. Evaluating the derivatives, the Jacobian matrix

is
[ A+3bz,? ‘
+(a+b)(x22+x32)] R(a+b)z,z, 2(a+b)z zg
A+3bz,?
J=| 2(a+b)z,z, +(a+b)(z12+x32)] 2(a+b)zazrg |+0(A%).(2-322)
A+3bzx 5?
‘ 2(a +b)x 23 2(a+b)zarg +(a+b)(z 2+z.2)

Note that this matrix is symmetric. (This is true only because the fifth order

terms have been neglected.)

® The Jacobian matrix, evaluated at the rolls, is

2b 0 0
JR=A%0 a 0|+0(4%). (2-323)
0 0 a

The eigenvalues for the zp and zg perturbations (4%a) are the same, by sym-
metry. Both are double eigenvalues since the translation which leaves 2z,
unchanged causes a phase shift of 23 and z5. There is also a null eigenvector
corresponding to the 2, phase shift. Therefore, the eigenvalues of the roll solu-
tions are

2bA%, (aA®)x4, and 0, (2-324)

where the notation (u4)xN means that the eigenvalue y has multiplicity N.
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® The Jacobian matrix, evaluated at the hexagons or regular triangles, is

b (a+b) (a+b)
Ju=2A4%(a+b) b (a+b)[+0(4%), (2-325)
(a+b) (a+b) b

where only the matrix of order A* is different for the two equal amplitude solu-

tions. The eigenvectors of this matrix are

1 1 1
1|, |-1|, and | 0, (2-326)
1 0 -1

and the corresponding eigenvalues are
%Az(.?a, +3b), —%Aaa , and —g—Aza . (2-327)
There are also two null eigenvalues corresponding to the translations. The
sixth and final eigenvalue determines the stability in the “phase” direction: see
equation (2-314).
® The Jacobian magrix, evaluated at the rectangles, is

b  (a+b) O

Jrpa=A%(a+b) b 0{. (2-328)
1
0 0 'é-(l
The eigenvectors are
1 1 0
1{, |-1], and |0 |, (2-329)
0 0 1
with eigenvalues
A*(a+2b), ~A%a, and ;_Aza. (2-330)

The third eigenvalue has multiplicity two, since the zg perturbation can be real
or imaginary. Finally, there are two zero eigenvalues corresponding to the

translations.

The nondegeneracy conditions, listed in equation (2-277), ensure that all
the eigenvalues in the table are non-zero (except where forced by the sym-

metry), and that none of the branches bifurcate vertically. Golubitsky, et al.
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(1984) show that there are no other small amplitude solutions when the nonde-

generacy conditions hold.

This completes the analysis of the Boussinesq normal form {2-278). The

results are summarized in the following table.

name definition amplitude eigenvalues
conduction {(C) | 2,=2,=23=0 A®=0 (A)x6
|z, 2= 4220 N
rolls (R) 2p=25=0 A% = < 2bA®, (ad®)x4, O

hexagons (H*)

lzllzz (22‘2= lzs‘z
d=0orm, A%#0

AR = __A_:*'_O_Q\_a)_

%AZ(Z(L +3b), —gcA‘*.
(—g-aAz)xz, (0)x2

regular
triangles (RT)

|2112=|2zg]%=|2z5]?

¢ = t%. A%£0

g-Az(za +3b), gc,«ﬁ.
(-2aa?)xz, (0)x2

rectangles (RA)

l21]%=|z2|%#0

Za=0

%a+b
A2= A
2

§a+b
Az= A _
la+d

2

A*(a +2b), —A%a,
(;—Aza)xz, (0)x2

Table 2-7. Solution data for equation (2-276). Eigenvalues with multiplicity N
are denoted by (u)xN.

Fig. 2-23 shows how the parameter space is divided by the nondegeneracy

conditions, and fig. 2-24 shows the bifurcation diagrams in the eight regions.

Note that, if the equal amplitude solutions are ignored, the results are similar

to those of the rhombic lattice. The most important difference is that the rec-

tangle solution is unstable to the hexagon and regular triangle solutions in

region II;.
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I,

b=0

111
a+2b =0
Il 2a +3b =0

Fig. 2-23. The space of coefficients of the Boussinesq normal form (2-276) for
convection on the hexagonal lattice. The a-b plane is divided into eight regions
by the nondegeneracy conditions (2-277). The Roman numerals are chosen to
correspond to the square and rhombic lattice cases (fig. 2-7); regions II and 1V
are divided by the extra nondegeneracy condition which is present on the hex-

agonal lattice: 2a +3b #0.
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z'x='-"-'1[}\"“1“2’2[2*'|‘"43|2)*‘01‘12]4‘0?—7253q

Af=z | |R+]2,5|%+]24|%, q=2z,2,245+2,7,24

P

T ‘

— ;
2 - A H
I ~ /‘.lT
- i .
S A
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L . ) /
A \\ 7 / -~ l?\—T'—
\\\ // /{_../ - i
\ X - ',/"/’ -
« > C
)
g

C: Conduction R:Rolls H:Hexagons RT: RegularTriangles RA: Rectangles

Fig. 2-24. The possible bifurcation diagrams for Boussinesq convection on a
hexagonal lattice when ¢ >0. The Roman numerals indicate the regions in the
a-b plane of fig 2-23. When ¢ <0 the hexagons and regular triangles are inter-
changed. For example, in region 1I, the regular triangles are stable when ¢ <0.
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2.9.5. The analysis of the non-Boussinesq normal forms

In the non-Boussinesq case of hexagonal convection, degenerate bifurca-
tions must be studied in order to find stable solutions in the small amplitude
analysis. Much of the complexity of the hexagonal case is present in the prob-
lem of bifurcation in the plane with the symmetry of the triangle. The
remainder of the problem can be analyzed on the subspace where the ampli-

tudes are real.

The equal amplitude subspace (D3 symmetry)

As with the Boussinesg case, it is easiest to start the analysis with the
equal amplitude solutions, the hexagons and triangles. The restriction of the
normal form to the equal amplitude subspace gives an ODE with the symmetry

of the triangle in the plane (Djg).

Three cases are discussed here. First all of the cases are defined, and then
the normal forms are analyzed for each separately. Which normal form is
relevant depends on the degree to which the Boussinesg approximation is

violated.

(1) The simplest case is when
AND, g#0. (2-331)
This is a transcritical bifurcation with Dg symmetry. As usual, the condition £#0
means that ¢ is not near zero. The second order truncation is sufficient here:
z =\z+e2°. (2-332)
(2) The next case is when
ARNQO, £R~0. (2-333)
The cubic truncation is not sufficient in this case, because when £ =0 there is a
degeneracy between hexagons and regular triangles (see the discussion of the

Boussinesq case). The fourth order terms, and the fifth order term which was
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present in the Boussinesq normal form are needed:
z=2z[A+(Ra+3b)|z |?+fq |+2%[c+(2d +3e) |2 |?+Tq ]. (2-334)
The nondegeneracy conditions are
(2a +3b)#0, (2d+3e)#0, and (2a+3b)c—(2d +3e)f #0. (2-335)
Note that the fourth order term, fzq, is included here even though it has no
counterpart in the normal forms of the €3 system (2-271). The explanation is
as follows: The analysis below shows that the gualitative behavior of the ODE
(3-334) does not depend on ¢ and f separately, but rather on the combination
(Ra +3b)c—(2d +3e)f . Therefore, the term proportional to f can be removed if

¢ is repaced by

o Ea‘—%‘i@—‘%‘fg—. (2-336)

In other words, equation (3-334) is equivalent to

Z=z|[ A (2a +3b)|z |2]+2z?[e+(2d +3e) |2 |2+cq |. (2-337)
Buzano and Golubitsky (1983) eliminated the corresponding fourth order term
of the €3 system, 2z, 2,q, in exactly this way to obtain the normal form (2-

271).

(3) The final case considered here is when all of the non-Boussinesq terms

are small:
ARO, £~0, (Rd+3e)~0, and f RO. (2-338)
This corresponds to breaking the Boussinesq symmetry. This case of of major
importance because the Boussinesq approximation is often used although it is
never exactly valid. The study of symmetry breaking tells what behavior one is
likely to find when the symmetry is approximate. Case (2) is not appropriate
when the symmetry breaking terms are small, because the nondegeneracy con-
ditions (3-335) require that the fourth order terms (2d +3e) are nonzero, (i.e.

not small).
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The truncation (3-337) is structurally stable when the non-Boussinesq
terms are small, provided the following nondegeneracy conditions hold:
(Ra +3b)#0, ¢#0. (2-339)
Note that the organizing center for this case (when ¢={(2d+3e)=f =0) is
exactly the Boussinesq normal form (2-306)-(2-307). When f is small and ¢#0,
the value of ¢ is very close to ¢, so the term proportional to f can be ignored
entirely. Therefore, symmetry breaking is described by a codimension-three
bifurcation, defined by

A=0, £¢=0, and (2d +3e)=0. (2-340)

Case (1):
The normal form of the transcritical Dy bifurcation (2-332), written in polar
coordinates, z =re'?, is

7 =AT +er2cosd 2.341)
$ = —~3grsind. (2-

(Either ¢ or ® =3¢ can be used here.)
The solutions are easily found; the $ equation implies that sin® =0, so that
hexagons are the only solutions other than conduction (2 =0). For the hexagon

solutions it is convenient to define

z =rcosd, (2-342)
so that
r >0 for H*, and
Z=l-r <0forH". (2-343)
In terms of z, the radial equation is
£ = Az +ex?. (2-344)

This is the same as the normal form (2-33) for the transcritical bifurcation. The

stationary solutions are
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z=h (2-345)

The stability of the solutions is determined the Jacobian matrix,

8 ar
o 2-346)
T=108 03 | (&
or 09

Because the hexagons are invariant under the transformation

z -z, (2-347)
which is equivalent to
ToT
. (2-348)
thus the matrix Jy commutes with
1 0
0 -1 (2-349)

Therefore the eigenvalues of the hexagons are always

ad
, and —
H oo

or

o (2-350)

H

If the symmetry argument seems too abstract, observe that the off-diagonal ele-
ments of J are proportional to sin® for the most general Dy-equivariant ODE (2-

292). This is zero when evaluated at the hexagons.

For the quadratic truncation (2-341), the eigenvalues of the hexagons are

o7, =A+2¢rcosb=¢z, (2-351)
or |y
and
92 | - _gercosd=-3er. (2-352)
3% |,

The two eigenvalues have opposite sign, therefore the hexagons are always
unstable at small amplitude. While the radial part of the system is the same as
the one-dimensional transcritical bifurcation of section 2.1, the phase eigen-

value prevents the hexagon solution from being stable. The phase portraits and
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ments of J are proportional to sin® for the most general Dg-equivariant ODE (2-

292). This is zero when evaluated at the hexagons.

For the quadratic truncation (2-341), the eigenvalues of the hexagons are

a7 =A+2ercosbd=¢cx,
67' H
and
ad
- =-3 = - .
3% | grcosd 3sx

(2-351)

(2-352)

The two eigenvalues have opposite sign, therefore the heragons are always

unstable at small amplitude. While the radial part of the system is the same as

the one-dimensional transcritical bifurcation of section 2.1, the phase eigen-

value prevents the hexagon solution from being stable. The phase portraits and



bifurcation diagrams for (2-341) are drawn in fig. 2-25.
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Fig. 2-25. Phase portraits of the transcritical Dy bifurcation {equation (2-341)).
Only one sixth of the phase space is shown; the rest of the plane follows from
the symmetries (see fig. 2-21). Three hexagons pass through the conduction
solution at A =0. These hexagons are unstable for A positive and negative.

Case (2):

Recalling that g =23+23 =2r3cos®, equation (2-337) can be written in polar

coordinates;

r=T [}\+(2a +b)ri+f 27‘acos@}+rzcos® [£+(2d +3e)r2+2¢r3cosd ] (2-353)

$=3¢p=—3rsind [a+(2d +3e )r2+2?:'racos<b] .
The solutions are:
» Hexagons (H*)
A+(2a +3b )r2+rcosd [ e+(2d +3e +2f )r2+28r3cosd | = 0,
cos¢=+1.
® Triangles (T)
A+{(2a +3b)r?+2fr3cosd =0,
e+(2d +3e)r?+28r3cosd = 0.
In terms of z =7 cos® the radial equation for the hexagons becomes
Aez +(2a +3b)z?+(Rd +3e +2f )z3+2¢x%=0.

Ignoring the terms of third order and higher, this has the solution

(2-354)

(2-355)

(2-356)

(2-357)

(2-358)

(2-359)
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—& + Ve2—4\(2a +3b)

2(2a +3b) (2-360)

xr =

There is a saddle-node bifurcation when the hexagon branch "“turns around”, at

e®

An = $zavap) 06
- \ (2-361)
Ton = Blaaran) O

As usual, the stability is determined by the Jacobian matrix (2-346), where

%}: AM2ercosd +3(2a +3b)r%+4(2d +3e +2f Jcosd 3+ 10%cos?drt, (2-362)
%=7‘2(—sin¢)[e+(2d +3e +2f )r2+4¥r9cosd ], (2-363)

8% _ . 2, @3
-5-7_———35m®[s+3(2d +3e)r?+8Cr costI)], and (2-364)
-6-3_—37‘005@ [8+(2d +3e)r?+2cT cos‘I)]+6r:'r sin®®., (2-365)

The stability of the hexagons is easy to calculate in polar coordinates. The

eigenvalues of Iy are

g_:'_ =z[e+2(2a +3b)z |+ 0(z?), and (2-368)

H

g_% = —3z[e+(2d +3e)z?+2823]. (2-367)
H

The radial eigenvalue changes sign at z,,, where the saddle-node bifurca-
tion occurs. Outside the interval between z =0 and zg,, the radial eigenvalue
has the same sign as 2a +3b. Inside this interval, the sign of the radial eigen-
value is the same as the sign of ¢z.

The phase eigenvalue (2-367) is more subtle. When £=0, and 2d +3e #0, the
hexagons are the only small amplitude solution, and the phase eigenvalue is

-3z (2d +3e)+0(z*) (2-368)
When £#0 and the sign of ¢ is opposite the sign of 2d +3e, the phase eigenvalue

changes sign at
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2 _"& _ /e -
z 2d+32+0(s ) (2-3869)

where the correction term is different for the two types of hexagons. When the
phase eigenvalue of the hexagons passes through zero there is a saddle node
bifurcation, and a branch of triangles is created. The conditions for this pitch-
fork are therefore the same as the conditions that a triangle exists with
cos® = £ 1 (see equations (2-357) and (2-358)):

A+(2a +3b)z%+2fz%=0 (2-370)

e+{2d +3e)z?+2¢z3=0. (2-371)
When the bifurcation diagrams are drawn, ¢ is thought of as a fixed parameter
while A is varied, so it is advantageous to find A, as a function of &, where A,
and A_ are the A values where the triangles collide with the H* and H™ branches,

respectively. When (2d +3e) is not near zero, one can solve (2-371) for z? and

3

z3:
gtz o TE__ _ _Rezl (2-372)
(2d+3¢)  (2d+3¢)
3
3 ¢+ & 2 e .
T Ba+3e) + . (2-373)
This can then be inserted into (2-370) to find
— —& _ 2?:53 _ 3
A=—(2a+30) maiEe) (2d+3e)] &f=
2-374
_(2a+30) [(2a+30)F ), o ( )
(2d +3e) (2d +3e) )
The result is
3
= {Ra+3b) | . —e ___|? .
A= Barae) | S E% Bavaey| | (2-375)

where ¢ is defined in equation (2-336). The two curves, A, and A_, are tangent
at the origin of the A-g¢ plane, and they open up to a horn-shaped region as

shown in fig. 2-26. When (2d +3e) ~0, the above argument breaks down. Assum-
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ing (2a +3b) is not near zero, a similar procedure leads to

(22 +3b) (za +3b) (2-376)

Ld+3——))\ £ (- 20)[ —————

This version of the lines defining the horn is valid even when (2d +3e )} =0. Note
that the combination (2a +3b)¢—(2d +3e)f is proportional to the width of the

horn.
Next, the stability of the triangles is computed. The Jacobian matrix,

evaluated at the triangle solutions, is not diagonal because sin®#0. The ele-

ments of the Jacobian matrix are

9T | —2(2a+3b)r2+0(rd), (2-377)
or |7
or | _ s ~
——| = —27*sind(f +Crcosd), (2-378)
3% |
%—7-_— = —STzsin@[(Zd +Be)+37'cos<13], and (2-379)
T
% : =BCcrsin®d, (2-380)

The phase eigenvalue is much smaller than the radial eigenvalue, so the
technique described in section 2.8.3 works here: The trace of Jy is
TrJr =2(2a +3b )r?+0(r3d), (2-381)
and the determinant is
Det Jy = 12r8sin?d{ (2a +3b ) —(2d +3e ) f |+ 0(r7). (2-382)
The matrix satisfies the inequality |Detdr| <« (Tr J7)?; therefore the eigenvalues

are approximately

Det J
Trdp, and Te—J—T-—ST ¢ sin?®+0(r") . (2-383)
T

This completes the analysis of case (). The phase portraits for the various
regions of fig. 2-26 are drawn in fig. 2-27, and the bifurcation diagrams are

,drawn in fig. 2-28.
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(Rd+3e) <0
—_—

;DZ X;y\ XS.r\

I
- Teo T
>\1- IL )_ -
(2d +3e)>0 VL
h=0
s T I
w
>\5" XSV\
c>0 c <0

Fig. 2-26. The unfolding space of the codimension-two Ds-symmetric bifurcation
(2-334) at A=e=0. The coefficients, 2a+3b, ¢, f, and 2d +3e are fixed, and
(2a +3b) <0 in all cases. Note that the coefficient ¢, rather than & and f, is
important (see equation (2-336).)
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(é/ | c<o //

Fig. 2-27. The phase portraits of equation (2-334) corresponding to the regions
in fig. 2-26. The phase portrait in region IV is not drawn because it is trivial: all
the trajectories approach the conduction solution at z =0.
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Fig. 2-28. The bifurcation diagrams, which plot A? vs. A, of equation (2-334). In
all cases, (Ra+3b)>0 so that the solutions are generally supercritical, and
(2d +3e) >0 so that H* is the stable solution at “large’ amplitude. These di-
agrams are drawn for the case where f =0, thus ¢ =¢. The slope of the triangle
branch depends on f and c, although the stability of the solution and the ord-
ering of the bifurcations only depends on ¢ (defined in equation (2-336).) The
diagram for & =0, which is not shown, has the two hexagon solutions bifurcating
with the same slope at the origin, and H* is always stable.
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Case (3):

The previous discussion was general enough to apply to the final case,
where all of the even order terms are small. When (2d +3e) is small, the horn-
shaped region opens almost vertical in the £-A diagrams, as shown in fig. 2-29.

This causes no further degeneracies, however.

Note that the coefficient f was only important through the combination
(Ra+3b)c—(2d +3e)f . (2-384)
In the present case both (2d +3e) and f are small, therefore f does not effect
the qualitative results. In the following analysis, no distinction is made between

¢ and ©.

When £ =0 there is a branch of triangle solutions which is created at

z= :(_2_‘?_210?_‘%).__ (2-385)

In case (B), this branch was not present in the analysis because it was at too
large an amplitude. When (2d +3d) is in the neighborhood of zero, this branch
is captured by the local analysis. In other words, one boundary of the horn-
shaped region, e=¢; in the A-g plane, intersects the £¢=0 line at small A
Therefore, when the bifurcation diagrams are drawn for fixed £¢~0, the paths
always go into the horn shaped region at small A, and the bifurcation diagrams

always contain triangle solutions.

An alternative way of displaying the results is to plot the regions in the e-
(2d +3e) plane where the bifurcation diagrams are qualitatively similar. The
sign of ¢ is obviously important. Another curve in the -(2d +3e) plane is deter-
mined by the parameter values where two pitchfork bifurcation of the phase
eigenvalue coalesce. This corresponds to the paths in g£-A space which are
tangent to the ¢, curves, as shown in fig. 2-29. This happens at the value of ¢
where there is a double root of the cubic equation which determines the phase

eigenvalue:
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e+(2d +3e)xz?+2cx3=0. (2-386)
The double root is determined by the simultaneous vanishing of (2-386) and its
derivative,
(2d +3e )2z +6cx?=0. (2-387)
This last equation has two roots,

—1 (2d +3e) )
3 ==L, (2-388)

z =0, and z =
When z =0 is inserted into equation (2-388), one finds that this double root only

occurs when £ =0. This is just the tip of the horn. When the nontrivial root is

inserted into equation (2-386) one finds that

8
+_1_@£i__'*ﬁe_L=o_ (2-389)
27 c?

Therefore the £-(2d +3e ) plane is divided into four regions, as shown in fig. 2-30.

The bifurcation diagrams, for each of these regions, are shown in fig. 2-31.



148

(2d+3e) <0 (2d +3e) =0 (2d +3e)>0

/ I~ 1

Fig. 2-29. The A-¢ unfolding space of equation (2-334) when (2d+3e) is small.
(Compare to fig. 2-26.) The other parameters are (2a+3b)<0 and ¢ <0. The
horn-shaped region, where the triangle solutions exist, opens vertically when
(Rd +3e)=0. The arrows indicate paths ;vhich are tangent to the A, or A_ curve.
These tangencies occur at & = —g—i—g—%)— These paths correspond to the boun-
c

daries between regions 1 and 2, or regions 3 and 4, in fig. 2-30. The bifurcation
diagrams for these paths are shown in fig. 2-31.

(2d+39) ‘ £=0

4 [3)

e= 1 @d_ﬂ‘g_ﬁ
27 P

Fig. 2-30. The unfolding space for the bifurcation diagrams of equ'ation (2-334)
when the Boussinesq symmetry is slightly broken. In the thin regions, 2 and 4,
the fourth order terms dominate the quadratic terms.
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c <0

Fig. 2-31. The bifurcation diagrams (A4® vs. A) for equation (2-334), with
(2b+3b) <0 and all of the even order coefficients small. The coeflicients £ and
(2d +3e) are indicated by the numbered regions of fig. 2-30.
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The real subspace

The remainder of the analysis is for the real subspace. The truncation of
the ODE (2-2;?1) to third order is sufficient here; the fourth and fifth order
terms are only needed to capture the subtleties of the phase. All the solutions
which exist for A%< 0(&?) can be made real by a suitable choice of the origin
using x-» x+d. The hexagons of both types are present in the real subspace,
and the effect of the quadratic term on the hexagons is faithfully carried over
by letting

2, =8Z,83> %, =£TpTy. (2-390)

The third order truncation of (2-271), restricted to the real subspace, is
iy =z [ A+ra(zf+zs?)+bA% | +ez a7y, (2-391)
The equations for z; and z£g follow from the permutation symmetry. The real
equations have the symmetry of the tetrahedron when £#0, and the symmetry
of the cube when £¢=0. See Appendix B for a discussion of this symmetry, as
well as the symmetry of the real subspace in the case of rotating Boussinesqg

and non-Boussinesqg convection on the hexagonal lattice.

The solutions of the third order system are listed here in canonical form:

* Conduction (C)

A?=0 (2-392)
* Rolls (R)
z,2=4%, z,2=z25=0 (2-393)
A%= l;‘— (2-394)
s Hexagons (H*)
z = z® =zg® = LAP (2-395)

(2-396)

z >0 for H*
z <0 for H™
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_ —e+Vef—4\(2a+3b)
B 2(2a +3b)

(2-397)

* Rectangles (RA)
T#ATy=xg, A®=1x,°+2x,°. (2-398)
The calculation of the amplitude of the rectangles is difficult enough that it
is done here. Two equations are needed for the rectangles;
£, =x,(A+RazxP+bA%) +ex,? (2-399)
d,=zo(Arez, +a(z B+z,2)+bA%). (2-400)
Cross multiplying, one finds
O=z,%5—2p%,=(x,°—2,%)zs(c+azx,). (2-401)
If z,° =z, then this is a hexagon solution. If z;=0 then this is a roll solution.

Therefore, the rectangles have

T = ——. (2-402)

Now z, can be inserted into equation (2-399) to find

—(A=2p)
Tt = ———oe, (2-403)
where
— 2
A = —”;’;——. (2-404)

The rectangles are created when the rolls undergo a pitchfork bifurcation at
A =MAy. This is discussed below after the stability of the rolls is determined. The

amplitude of the rectangles is linear in A:

2 A A g2
£ '4 £

- SN 2-

a? Zl,-a.+b a® (2-405)

These rectangles are different than the rectangles on the rhombic lattice since

theré are three nonzero amplitudes. On the rhombic lattice, however, there are

second-order modes, with vertical ‘'‘quantum number " n =1, which are similar

to the third critical amplitude on the hexagonal lattice.
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The stability of the solutions is given by the eigenvalues of the Jacobian

matrix,
(A +a(z2+z5%)+bA% ‘
+20z 2 2(a+b)r,zo+ezy 2(a+b)r,r3tex,
AMa(z ®+z5%)+bA?
J= » +2bz 2 2(a+b)ryzgtez, |, (2-406)
Aa(z2+zR)+bAR
‘ * * +2bz 42 J

where the matrix is symmetric, so the terms below the diagonal are not written.
The symmetry of the matrix is a consequence of the truncation. When higher

order terms (for instance z, =z ,z,*) are added, J is not a symmetric matrix.

® When evaluated at the conduction solution, the Jacobian matrix is

Io= (2-407)

S O
o > O
> O O

The eigenvalues of the real system are (A\)x3, i.e. A has multiplicity 3. For the

complex system the multiplicity of the eigenvalue is six.

®* The Jacobian matrix, evaluated at the rolls, is

26,2 0 O

Jr=| 0 az,® ex,]. (2-408)
0 sr, azx,®
The eigenvectors are
1 0 0
0}, |1}, and |-1]. {2-409)
0 1 1

The corresponding eigenvalues of the real system are
2bA?, azr,*+ex,, and azr,’-¢zx,. (2-410)
In the complex system, the eigenvalues are
2642, (a4?+eVA?)x2, (ad?—eVAZ)x2, and 0. (2-411)
It is clear that the z; roll must treat the real and imaginary parts of z; and z4

equivalently; this gives the double eigenvalues. The zero eigenvalue comes from
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the translation in the k; direction.

One of the eigenvalues of Jg changes sign when

A=A, AZ=(4R), = ( fl-)z (2-412)

At this bifurcation the rectangles are created (see equation (2-404)). In the
real system this is a pitchfork bifurcation, and in the complex system this is a
pitchfork of revolution. The normal form of a pitchfork of revolution is
Z2=\z xz2|z|?. (2-413)
This normal form has 0(2) symmetry in the plane, generated by
z -2z, (2-414)
and
z »e'¥z (2-415)
for any angle ¢. In the present problem, any phase of z, is possible when the
rectangles bifurcate off the 2, rolls. The phase of 25 is then determined by the
condition

cos® = —sgn(a). (2-418)

® The Jacobian matrix for the hexagons is

ABBE
dy=|B A B, (2-417)
B B A
where
A =2bz?-¢z, and (2-418)
B=2(a+b)z%+sex. (2-419)
The eigenvectors of this matrix are
1 -1 0
11, 11, and |[-1{. (2-420)
1 0 1
The corresponding eigenvalues are
A+2B =[2(2a+3b)z?+sz |, (2-421)

and a double eigenvalue:
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A—-B=-2(az?+ex). (2-422)
The radial eigenvalue (2-421) has been discussed in the section on the
equal amplitude solutions. The double eigenvalue (2-422) changes sign at

A = :(_a_ig_bl_sz, P (2-423)
a a

At this amplitude the three rectangles collide with the each hexagon in a Dy

transcritical bifurcation. Here the Dy symmetry is generated by

(1, Z2.23) » (x2.25,2,), and
2-4
(z),22.23) > (21, 23.75). (2-424)
This is the same type of bifurcation as the one in which the three hexagons col-
lide with the conduction solution in the Dy transcritical bifurcation (2-332).

This equivalence is discussed further after the stability of the rectangles is

computed.

In the complex system, there are two zero eigenvalues corresponding to
the two translations. The sixth and final eigenvector is from the phase, see
equation (2-3687). Therefore the eigenvalues of the hexagons are

2[(2(1 +3b )zz+sx] , [—Z(azz+£z)]><2 .

~ 2-425
—3z[s+(2d+3e)z2+2cz3], and (0)x2. ( )

® The Jacobian matrix, evaluated at the rectangles with z,=—¢/a, is

ABB
Jpa=|B C DI, (2-4286)
BDC

where

2

A= Zb: +Gx22,
a

B= [:(f%_zﬁ)_

Exo,

C= —8&-—+2bx22. and

2
D=2(a+b)x22—%~.
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The eigenvectors of this matrix are not obvious, with the exception of

0
1]. (2-428)
-1

Since the matrix is symmetric, the eigenvalues are real, and the eigenvectors
are orthogonal. The problem can’be reduced to finding the eigenvalues of a two
by two matrix in this plane as follows. The eigenvalues of J are invariant under
a similarity transformation

J-»SLJS. (2-429)
In order to isolate the known eigenvalue, the first column of S is chosen to be
the known eigenvector. The other columns are chosen to make S the orthogo-

nal matrix which diagonalizes J when 5 =0.

. 0 VZ 0O
S=—| 1 0 1 (2-430)
V2 -1 0 1
The inverse is
1 0 1 -1
st=—|vZ 0 o, (2-431)
V2 0 1 1

and the result of the similarity transformation is
(c-p) o0 0
S 1JgaS= 0 A ~2B|. (2-432)
0 2B C+D,
The obvious eigenvalue is
C-D= i—[sz—(axg)z] . (2-433)
This eigenvalue changes sign once, precisely where the rectangle solutions col-

lide with the hexagons.

The eigenvalues of the two by two block,

VEB C+D (R-434)

A \/EB]

can be found by taking its determinant and trace. The trace of (2-434) is
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b g?

Tr =A+C+D=(3a+4b)z%+ —-, (2-435)
a
and the determinant is
Det =A(C+D)-RB?*= 3(‘1 +2b )zzz[(azg)z—szl . (2-436)
The eigenvalues of the two by two block are
1
LTr & [(%Tr)z—Det] 7 (2-437)

This form of the eigenvalues is not very convenient. All that is really important
are the signs of the eigenvalues, and the following observations allow the signs

to be determined.

The eigenvalues can be thought of as functions of z,%. As z,% ranges from 0
to greater than of order £* the determinant changes sign exactly once. When
the rectangles first bifurcate off the rolls, £,°<«<s?<« 1, and |Det |<«<(Tr)?. As a

consequence, the eigenvalues are approximately

2
C-Dw 2g°
a

be?
Tr & ——, d -
rN—S. an (2-438)
Det —Ra{a +2b)z,?
Tr b )

On the other hand, when #2«&z,°«1, the matrix is almost diagonal, and the

eigenvalues are

C-D~ "2(1222
ARazz?, and (2-439)
C+D=2(a+2b)z,2.

The determinant is zero when the rectangles collide with the hexagons, at

which point the eigenvalues are

c-D=0,
Det =0, and (2-440)

2
Tr =2(a +2b) <.
¢ A
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The result is simple. In both cases (2-438) and (2-439) the signs of the
eigenvalues of the rectangles are
+1, -1, and sgn{a+2b). | (2-441)
The only time an eigenvalue can go through through zero is when the deter-
minant vanishes. This happens when three rectangle solutions collide with a
hexagon solution in a transcritical bifurcation with Dy symmetry. This bifurca-
tion was studied for case (1) above (see fig. 2-25). In the present context, the
symmetry comes from the permutation group of 2, 25, and 2g3. The hexagons in
fig. 2-25 correspond to the rectangles here, and the conduction solution in fig.
2-25 corresponds to the hexagon. Note that, in the present context, the
number of positive and negative eigenvalues of the rectangles is the same
before and after the bifurcation, while two eigenvalues of the hexagons change
sign. At the bifurcation, the eigenvalues of the rectangles are given by (2-440);

for all other parameter values the results of equation (2-441) hold.

In the complex system, the phase ¢ of the rectangles is defined since all
three amplitudes are nonzero. As a consequence there are two zero eigen-
values corresponding to the two translations, and there is a phase eigenvalue.
In order to calculate the phase eigenvalue, first note that the rectangles are

real solutions, meaning that sin® =0, so that

974 -l =0 (2-442)
6(1) sind=0 aTﬂ gind =0

for a =1, 2, and 3. Therefore the phase eigenvalue is

8
= (2-443)
Assuming |z,|% = |23|? equation (2-266) for ¢; and the implied equation for ¢,
are

. 1 o
= ——;—(Z12223"'212223)[8'*‘0(142)] (2‘44.-4:)
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_ —sin®|z,||z,]?

PRE g, (2-445)
P = -é—;-l—;z—i—z—(iligfa—zlzzzs)[s+ O(Az)]. (2-448)
=-sin®|z;|e+ . (-447)
Therefore,
$=@,+2¢p, = —sind s[ll%ll-|22|2+2_l%ll—]' (2-448)

and the phase eigenvalue is
—cos® E[Jl—c:—ll—1 z5|%+2 -I%-[l—} (2-449)

Note that a requirement for a stationary solution is that siné=0, so that
cos® = +£1. Only one of these corresponds to the rectangles, however. From

equations (2-398) and (2-402), the rectangles satisfy

sgn(z ,zz3) = 5gn ( -—;—) . (2-450)

when the amplitudes are real. This implies in general that
cos{®) = —-sgn(i) (2-451)
a
for the rectangles, so the phase eigenvalue is
g2
al zzlz+2?. (2-452)

The sign of the phase eigenvalue is sgn{a). This agrees with the phase eigen-

value implicitly given by Buzano & Golubitsky (1983, p. 635).

In the limit that £ » 0, all of the eigenvalues of the rectangles are of order
| 2,12, and they agree with the the results of table 2-7 for the Boussinesq rec-
tangles. Therefore, in the degenerate case where £ =0, but the Boussinesq sym-
metry does not hold, the fourth (and higher) order terms do not change the
signs of the eigenvalues of the rectangles. (The fourth order terms contribute

to the eigenvalues at order three.) This concludes the calculation of the
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eigenvalues of the rectangles.

Two eigenvalues of the triangles remain to be calculated. The radial and
the phase eigenvalues were calculated in the previous section, and two eigen-
values are zero due to the translational symmetry. In the Boussinesq case, the
remaining two eigenvalues are

—Lg’.aAz, (2-453)
and the eigenvectors are in the the plane which is perpendicular to the radial
eigenvector ir; the three-dimensional imaginary subspace. A calculation shows
that these eigenvalues are not changed significantly in the non-Boussinesq
case. The eigenvalues of the triangles are

2(2a+b)A*+0(r%), 2cA%sin?d+0(r%), [~Zad?+0(er)]x2, and (0)x2. (2-454)

The results of the analysis of this section are summarized in two tables and
two diagrams. Table 2-8 lists the data on the amplitude and stability of the
solutions, and table 2-9 gives the locations of the various bifurcations on the A-

¢ plane.
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rolls (R)

name amplitude eigenvalues
conduction {C) | A%=0 (\)x8
_ =A
AP= — 2bA%, (az®+ex)x2,

(axR-ez)x2, 0

hexagons (H*¥)

—g £ VeP—4r(2a +3b)
2(Ra +3b)

Z|T2y=2g=C

[2(2a +3b)z%+ez |,
[2(az?+sz) |x2,
—Bz[s+(2d +3e )z2+20z3] .

(0)xR

triangles (T)

|2,]%=]22|%=]23]|"
cosd# £ 1
see equation {nnn)

2(2a +b)A%, EZcA®sin®®,

[-2aa?]x2, (0)x2

rectangles (RA)

(signs of eigenvalues)

1, =1, sgn(a+2b),

sgn{a ), {0)x2

Table 2-8.

Table 2-9.

Solution data for equation (2-271).

primary bifurcation A=0

g?

saddle-node H* Asn

—&

pitchfork H*-T

_{Ra+3b) |
7 (2d +3e)

3
—_ 2
+2c (‘éa%sre—)] J

pitchfork
of revolution

—bg? ak
R.RA kp = —-—a’—___' (Az)p = | =

transcritical, Tt _ =
Ds symmetry RAH Ae = a?

Secondary bifurcation data for equation (2-271).
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In addition to the nondegeneracy conditions discussed previously, there
are nondegeneracy conditions which ensure that the secondary bifurcations
occur at different A values. The degeneracies where two bifurcations occur

simultaneously are listed in the following table.

degeneracy condition

Asn = Ap (a+6b){a+2b)=0
Asn = At (a+2b)=0

A =N (a+2b)=0

Ap =0 b=0

At =0 (a+3b)=0

|}\p Al 2 00 | @a=0

Av = Ao c=0

IAel, [A2] 200 | (2d+3e)=0

Table 2-10. Degenerate parameter values due to simultaneous secondary bifur-
cations.

Note that this table implies two nondegeneracy conditions involving ¢ and b,

(e +6b)#0, and (a+3b)#0, (2-455)
which are not present for the Boussinesqg normal form. Fig. 2-32 shows the non-
degenerate regions in the a-b plane form the non-Boussinesq normal form.
Within each of these regions the order of the bifurcations, as A is increased for
fixed g, is the same. Fig. 2-32 shows the A-¢ plane for half of the regions in fig.
2-33, along with the corresponding bifurcation diagrams. The other cases can
be obtained by reversing the direction of time. Regions 1 and 1I; of fig. 2-32 are
the most interesting, because there are no solutions which are subecritical
(except for the hexagons, which turn over at small amplitude). For these cases,
the local bifurcation analysis gives a possible description of the global bifurca-

tion behavior. While region I is predicted for Bénard convection with small
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non-Boussinesq effects, the bifurcation sequence of region II; is observed for
highly non-Boussinesq fluids (White, 1983). In other words, the hexagons

remain the stable solution at large Rayleigh numbers.

b Ve "
VI,
v
Vi3
Viz
> ¢ b=0
a+6b=0
I
a+3b=0
a+2=0
a=0 2a +35=0

Fig. 2-32. The nondegeneracy conditions (2-272) of the normal form (2-271)
divide the a-b plane into 12 regions, as shown. The labeling of the regions is
chosen to correspond to figs. 2-7 and 2-23. Region III of fig. 2-23, which applies
to the Boussinesq case, is divided into three regions here by the new nondegen-
eracy conditions which are needed in the non-Boussinesq case (2-455).



163

R
H+
I
-
C
H+
- RA
i H

R

C
-
RA

H+

Fig. 2-33.
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Fig. 2-33. The bifurcation diagrams for equation (2-271), for the coefficients a
and b in the regions numbered in fig. 2-32. (Only the regions with b <0 are
shown.) The other coefficients are £>0, and (2d+3e)>0. This combination is
chosed so that there are no bifurcations involving the triangle solutions. The
differences between the three bifurcation diagrams for regions iI;, 1llp, and I3
only invelves the ordering of the secondary bifurcations.
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2.10. The Lattice Function

For certain examples of convection, & and & can be calculated. The
parameter a depends on the angle between k, and ks;. Furthermore, because of
the reflection symmetry which interchanges k; and ks, @ must be an even func-
tion of this angle. Following Schliiter, Lortz & Busse (1965), define ¢ as the

cosine of the angle between k; and kj:

¢ =cos{a)

— K - k;

There are contributions to the a term in 2, from rolls at the angles a and
w—a. Therefore the function for a has the form
a=az=a(p)+a(-p). (2-4586)

Sattinger (1979) calls Qe the lattice function. He proves that

b=lima a, (2-457)
g2o1 ¥
which gives the normal form
Z1=2,[A+b (2| 22]%+]2,]9)] (2-458)

in the limit o » 0.

This result is implicit in the results of Schliiter et al. (1965). It follows from
continuity, since as k; and kp; approach each other they become indistinguish-
able. The factor of two in equation (2-458) follows from a combinatoric argu-

ment found in Sattinger (1979).

As mentioned above, the equal amplitude solutions in the rhombic lattice
are traditionally called rectangles. The limiting reclangles live on the rhombic
lattice where the angle between the two k vectors approaches zero. Equation

(2-457) shows that a =b for the limiting rectangles, so they are never stable.
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The value of a in the hexagonal lattice normal form is

ag=a =1 (2-459)

@2
In other words, the same calculation which determines a for the rectangles can
be used for the coefficient @ in the hexagonal lattice normal form. The rectan-
gle solutions on the hexagonal lattice are continuous with the rectangles in the

nearby rhombic lattices.

The value of a in the square lattice normal form is

ag=a (2-460)

pi=0"
In the usual approach (such as Malkus & Veronis, 1958), one calculates R, to
determine if the pattern is subcritical or supercritical, where

R=FR +Ry, A%+ - -+ . (2-661)
In terms of the coefficients a and &, #; can be expressed as

'—b for rolls.

—( —;—(l¢3+b ) for rectangles.
) (2-862)
- §a¢2=o+b for squares.

"(%‘a¢8=1_+b) for hexagons.
4
\

(The constant of proportionality is positive definite, and it is the same for all of

the patterns.)

Note that the only possible unique stable pattern is the rolls. Many
different rectangle patterns are stable in the cases where the lattice function
predicts that three-dimensional patterns are stable in a symmetric system. In
this case it is not obvious what would happen in a physical fluid layer, where
double periodicity is not imposed. There is no rigorous way to test stability of a
pattern on one lattice when perturbed by a pattern in another lattice. How-
ever, since the pattern with the greatest heat transport is stable within a given
lattice, it seems reasonable that the pattern with the greatest heat transport

among all the lattices would be the most stable. If the lattice function is linear,
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and all the patterns are supercritical, then either the squares or the rolls have

the greatest heat transport in the Boussinesq case.

There are at least two cases where calculations have shown that three

dimensional patterns are stable at the onset of convection.

* Busse and Riahi (1980) have shown that squares are stable when the conduc-
tivity of the boundaries is very small. They found that the lattice function is
linear, and that ag=0, in the limit where the conductivity goes to zero (see fig.
2-34). This is the first known example where three-dimensional patterns are
stable in a system with the Boussinesq symmetry. Riahi (1983) has shown that
the effect persists whether or not the vertical symmetry of the boundary condi-
tions is preserved. He has also calculated the regions, in the space of conduc-

tivity of the top and bottom boundary, where squares and rolls are preferred.

» Frick & Busse (1983) have calculated the a parameter for squares in highly
non-Boussin_esq convection, where the viscosity depends on temperature. They
find that squares are stable for a sufficiently non-Boussinesq system. Thereis a
mathematical advantage to using the square lattice for highly non-Boussinesq
systems, because stable solutions can be found at small amplitude. By con-
trast, the hexagons bifurcate transcritically and are always unstable near the
origin in non-Boussinesq systems.

For a given realization of the lattice function, the bifurcation diagrams for

the various special lattices can be superimposed. Some examples are shown in

fig. 2-34.
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=

2 ¢* (a)

a5}

(b) S

R, H
LR

<b C: Conduction R: Rolls
? =/ S : Squares

H: Hexagons or Regular Triangles

LR : Limiting Rectangles

Fig. 2-34. The bifurcation diagrams corresponding to two lattice functions. Fig.
(a) shows the lattice function typical of Bénard convection, where a <0 for all
lattices. Fig. (b) shows the linear lattice function found by Busse and Riahi
(1980) for convection with nearly insulating boundaries. The rolls are the only
stable solution for the upper lattice function (a). For the lattice function (b),
all rectangles are supercritical, and rectangles with ¢? <71- are stable to pertur-

bations within their own lattice. In this lower case the squares have the largest
heat transport, and ay=0, so that the rolls and hexagons have the same heat

transport.
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Experimentally, Whitehead & Parsons (1978) observed that there is a ten-
dency for squares to be stable at large Rayleigh numbers in large Prandtl
number Boussinesq convection. The effects of the side walls eventually destroy
the stability of the squares; this has been studied quantitatively by Whitehead
(1983). In an infinite fluid layer, perhaps the squares gain stability in a secon-
dary bifurcation similar to fig. 2-19, (region 1I or Ill, a <0). Frick, Busse, &
Clever (1983) have calculated numerically (for infinite Prandtl number) that
the sgquares have larger heat transport than the rolls at large Rayleigh
numbers. They discuss the possibility that the squares gain stability at even

larger Rayleigh numbers.

White (1983) has observed a tendency toward square pattern convection in
highly non-Boussinesg fluids, which are used to simulate convection in the
earth’s mantle. White set up the initial convection pattern by heating certain
places, using the technique of Busse & Whitehead (1971). The interaction
between squares and hexagons is quite interesting and complicated in these
experiments, and there are large regions in parameter space where both are

stable.

One of White's most interesting observations is of a pattern which he calls
triangles, for obvious reasons (see fig. 2-35). (These are not what are called tri-
angles here.) These triangles were initiated by heating points on a hexagonal
grid. In the experiments the triangles lasted for up to 10 hours before the
effects from the sidewalls destroyed the pattern. The pattern was more stable
at larger Rayleigh numbers. White predicts that this pattern would be stable at
very large Rayleigh numbers, in the absence of sidewalls. Observaticn of fig. 2-
35 shows that these triangles are in fact hexagons of the “wrong” sign, H™. In
other words, these are g-hexagons in a liquid. The distinctive triangular grid of

white lines that White observes are perhaps due to the l-hexagons of
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wavenumber V3k, which are superposed on the g-hexagons of wavenumber k,.

Recall that one of the bifurcation diagrams, fig. 2-31 {¢ >0), shows exactly
what one would expect from White's experiments. At small Rayleigh number
only H* is stable, but at larger Rayleigh number the H™ branch gains stability.
While these bifurcation diagrams are technically only good for very small non-
Boussinesq effects and small amplitude, they seem to work in this case. This
often happens; the secondary bifurcations which are present in the degenerate

bifurcations capture behavior that typically occurs at quite large amplitude.
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Fig. 2-35. Convection planforms observed by D. White (1983) in highly non-
Boussinesq syrup. These patterns were induced by shining light through a grid
pattern onto the fluid layer, thus causing “hot spots”. Then the grid is removed
and the Rayleigh number is increased greatly. One unit cell in each pattern is
remoded to aid the identification of the pattern. The pattern on the left is the
usual H* pattern observed in fluids. Note the center of each hexagonal unit cell
is dark, warmer, rising fluid. The pattern on the right is the H™ pattern, which
White calls triangles. These are not the triangles discussed here, however.
White finds that the triangles seem to gain stability at large Rayleigh numbers.
This is consistent with the results of the upper figures of fig. 2-31. These pic-
tures were kindly supplied by David White.
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Chapter Three

Normal Forms for Hopf Bifurcations

In doubly diffusive convection and rotating convection, as well as magneto-
convection, the convective instability can take the form of growing oscillations.
In the linear stability analysis, a complex conjugate pair of eigenvalues crosses
into the right-half plane. This is often called overstability in the fluid mechan-
ics literature, since a perturbed system is attracted back to the origin with

such force that it overshoots and gains energy with each oscillation.

The exponential growth of the oscillations, predicted by linear theory, is of
course modified by the nonlinear terms. If the cubic terms are attracting, then
there is a stable branch of oscillatory solutions, called limit cycles, which
grows as the bifurcations parameter exceeds the critical value. This is called a
supercritical Hopf bifurcation. A subecritical Hopf bifurcation is analogous: an
unstable branch of limit cycles is swallowed up by the origin at the critical

parameter value.

The Hopf bifurcation of a roll pattern leads to wave solutions, since the
fields oscillate in both space and time. In two-dimensional convection, the limit
cycles can correspond to two different physical solutions: standing waves and
traveling waves. In three-dimensional convection, standing and traveling

squares and other exotic patterns are possible.

The pattern selection between standing and traveling waves is described by
a normal form which is essentially the same as the normal form for bifurcations
in the two-dimensional plane with square symmetry. Recall that normal convec-
tion in a square or rhombic lattice can also be reduced to this case. Therefore,
the results of the previous chapter apply to oscillatory convection, where rolls

are replaced by traveling waves, and squares are replaced by standing waves.
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3.1. Hopf Bifurcations in the Plane

If the two-dimensional plane is described by a complex number z, then the
linearization of an ODE near a Hopf bifurcation at the origin is

z =(A+iw)z (3-1)

z=(A—1iw)z. (3-2)

where A and w are real. The ODE for Z is just the complex conjugate of the

equation for 2, and can be ignored.

In this section it is shown that the normal form for a Hopf bifurcation in
the plane is
z =z[()\+iw)+a|z|2]. (3-3)
Adding the most general quadratic and cubic terms to the linear ODE in the
neighborhood of a Hopf bifurcation gives
2 =(A+iw)z +12°+q22Z +qsZ°+0,2%4+022%5 + 03222+ 0,28, (3-4)
where g, and ¢, are complex.
If the ODE has the symmetry
z -z, (3-5)
then the quadratic coefficients are all zero. This is the case with Boussinesqg

convection.

When A =0, and the g, are zero, a near identity change of coordinates can
get rid of all of the cubic terms except ca. The general near identity change of
coordinates which preserves the 2z + -~z symmetry of the ODE is

(=2 +a,2%+a,2°%7 +a32Z2%+ 0,425+ 0(] 2 | 9), (3-8)
where the a4 are complex. The ODE for the new coordinate is
¢=2+3i0a,28+iwa2?Z —iwa22%~3iwaz3+0(] ¢3). (3-7)
When 2 in the above formula is replaced by
g = iw[(—a,zs-—agzzi—aszfz-—mis]-f-clzs-i-ngzE +032Z%+c,23+0(] ¢|9), (3-8)

the ODE becomes
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¢=iwe+(c1~Riwa)23+c22%Z +(cstivas)2Z°+(catdinwas)Z+0(|2 %),  (3-9)

By a judicious choice of the a, coeflicients, all of the terms except ¢z can be

eliminated. (Note that a; can be anything.) The z’'s in the third order terms can
be replaced by ¢’s to obtain the normal form for the Hopf bifurcation,

E=iwgrest|¢[2+0(1¢]%). (3-10)

Knowing this result, it is now easier to find the normal form for the general

cubic system (3-4), including the quadratic terms. All of the gquadratic terms

can be eliminated by a near identity change of variables,

¢=z+b122+bazZ +byZ%, (3-11)

but at the expense of introducing new cubic coeflicients. Only the induced

coefficient of z?% is needed for the normal form, since the change of variables

(3-6) can then be used to eliminate all other cubic term.

Differentiating (3-11) gives

¢ =2 +2b122 +ba(23 +22 ) +2b32Z + 0(25, 22%, 2°)+ 0(| 2 |*)
=3 +2b,(iwz?+qe2z |2 |2)+ba(Fatg1)2z |2 |2+2bs(~iwZ%+742 |2 |?) (3-12)

+0(28, 22%, 29+ 0(|z |%).
Since only the coefficient of z |z |? is important, the other cubic coefficients are

ignored. In the above equation, 2 should be replaced by

2 =ie(E~b122—byzZ —bsZ?) +q12°+qe2Z +qsZ°+cez 2 |?
+0(23, 2z%, %)
(3-13)
=iwé+(g1—iwb,)z?+(ge—iwba)2Z +(gs—iwbs)Z°+ca2z | 2 |2
+0(25, 22°, 2%).

Inserting the last equation into (3-12) gives

F=qw+{gitiob:)2?+(ge—iwba)2Z +(g3—3iwbs)Z?
q

+[Ca+261Qa+bz(q—2+q1)+2b3!?3]2 IZ |2 (3'14)
+0(23, 22% 23+ 0(|z |%).

The choice of the b, coefficients which eliminates the quadratic terms is
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9 ge 93
=21 = 22 d b= =22, -
b, 7 b 7 and bj 1o (3-15)

These values of b, are inserted into the coefficient of z |z |? in equation (3-14),

and z can be replaced by ¢ at third order to give
;. 1 - _ -2 3
¢=iwg+[oet ;:-&;(—qtqw-qaqa%qaq:s)](l(l2+ 0(&8, ¢ %) +0(l¢|*). (3-16)

At this point, the near identity transformation with cubic terms (3-6) can
be used to eliminate the cubic terms other than ¢|¢|%. Relabeling ¢ as z, the

normal form corresponding to the general ODE (3-4) is

. , 1 _ _

2 —iwz +[cz+ E(—qlqg+ngg+§q3q3)]z |z |2+0(|2]%) (3-17)
This formula is derived in Hassard, Kazarinoff, and Wan (1981).

The error term listed above is order 5 because the order 4 terms can be
eliminated by yet another near identity change of variables. The general result
is that the normal form is

2=z f(|z]?) (3-18)
to all orders in the Taylor expansion. Therefore the normal form is equivariant
under rotations in the complex plane:

z ez, (3-19)
(There is also an exponentially flat “tail” which does not have this symmetry,

but this is a technicality which is not important here.)

The symmetry (3-19) will be called the time translation symmetry. Note
its similarity to the space translation symmetry (2-132) in a periodic spatial
domain. There is a difference between these two symmetries. The convection
equations are equivariant under translations, and therefore so is the normal
form. On the other hand, the time translation symmetry is not present in the

original equation (3-4).
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3.2. Traveling and Standing Waves

When the Hopf bifurcation is in the space of roll amplitudes, the sym-
metries are different than they are in the planar example. The critical modes
are the eigenfunctions with eigenvalues tiw. The normalization can be chosen
so that

Yiw= Cf (Ex)e™™, and
Yoio= Of (Bm)et™x, (3-20)
where f(Z'x) is the vertical eigenfunction. (The vertical coordinate z is

referred to as Z-x to avoid confusion with the amplitude z.) When the system is
on the critical eigenspace, a typical field is of the form
Yz t)=f(2x) [(Cz+Cw)e ™ *+(C z+cw)e—"h] . (3-21)
The time-dependent amplitudes, z and w, satisfy
z2= iwz+ (3-22)
W=—iww+ - (3-23)
at the critical Rayleigh number. Note that this equation is similar to the linear-
ized equation at a Hopf bifurcation in the real plane ((3-1) and (3-2), with A =0),
except that w replaces z. The fact that w is not constrained to equal Z is

responsible for the possibility of both traveling waves and standing waves.

As can be observed from equation (3-21), the symmetry corresponding to
k-»-kis
(z,w)»(w,z). (3-24)
When |z [?= |w |?, it is possible to choose a translation, x - x+d, such that
z =i0. (3-25)
(This relationship is preserved under the dynamics because 2 =1.) In this case
the solution is a standing wave:
Y(x, t) < [ (Z-x)cos{wt +6)cos(kx). (3-28)

When z =0 or w =0 it is possible to put the solution in the form w =0, using the
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symmetry (3-24) if necessary. The solution is a traveling wave:
Y(x, t) < f (xZ)cos{wt +k'X). (3-27)
As with the normal Hopf bifurcation, the normal form has the time transla-

tion symmetry,

(z,w)~» (ew‘z.e—w‘w), (3-28)
and the space translation symmetry,
(z,w)-»etFdz,w). (3-29)

It is advantageous to combine the two translation symmetries into space-
time translation symmetries which follow the left and right going traveling
waves. Choose the displacement so that k-d= +¢; to give

(z, w)~ (2, eizm'w), (3-30)
and

(z,w) ("2, w). (38-31)
The equivariant vector fields with this symmetry are
s=2g(lz|% wl?) (3-32)
w=wg(lwl?|z[?) (3-33)
where g is an arbitrary complex function of two real arguments, i.e.
g:R%- C. (3-34)
The first nontrivial truncation of this general ODE is
s=z[(Ariw)+a|w|2+b (|2 |3+ |w|?)] (3-35)
w=w[(A-iw)+a |z |2+5(|z |2+ |w|?)], (3-36)
where A and o are real, and @ and b are complex.
The behavior of this system is most easily analyzed by looking at the mag-
nitudes of z and w. These amplitudes can be written in polar coordinate as fol-
lows:

z=z.e" (3-37)
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w=zge 2. (3-38)
The overall amplitude is
Al=lz |?+|w|? =z %+x,2. (3-39)

In terms of the polar coordinates, equations (3-40) and (3-41) are

£, =z, AM+Re(a)z2+Re(b)A?], (3-40)
£, =z, A+Re(a)z,2+Re(b)4%], (3-41)
@y = o+Im(a )z 2+Im(b )42, | (3-42)
92= —w—Im(a )z ,2~Tm(b )A2. (3-43)

The coordinates z; and z; satisfy the normal form for bifurcation with Dy sym-
metry, equation (2-51). The coefficients @ and b in equation (2-51) are
replaced by Re{a) and Re(d) in equations (3-40) and (3-41). The behavior of
the phase is not important for the qualitative behavior of the solutions; the

oscillatory solutions have an angular frequency of approximately w.

Therefore, the bifurcations of two-dimensional ascillatory convection have
similar behavior to the bifurcations in the real plane with the symmetry of the
square which in turn hove similar behavior to the bifurcations in three-
dimensional stationary convection, The standing waves in the oscillatory sys-
tem corresponding to the squares in three-dimensional convection, and the
traveling waves corresponding to the rolls.

The reason that the three problems are similar is that they all have an
underlying D, symmetry.

This bifurcation has been studied by many workers, including Bajaj (1982)
and Golubitsky & Stuart (1984). They find that the stability of the standing and
traveling wave solutions agrees with the results of the real system (2-51).

The linear stability of a periodic orbit is typicélly found by calculating the
Floquet exponents, which describe how the perturbations grow or decay. One of

the Flogquet exponents is always zero because displacements along the flow
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direction on the limit cycle neither grow nor decay. The stability analysis of
Bajaj (1982) and Golubitsky & Stuart (1984) confirms the behavior of (3-35) and

(3-36) is qualitatively similar to the behavior of (2-51).

3.3. Three-Dimensional Oscillatory Convection

In this section the most general equivariant ODEs for oscillatory convection
on a rhombic, square, or hexagonal lattice is found. The analysis of the trunca-
tions has not been done completely enough to determine the normal forms for
these cases. There are two important results in this section. The equivariant
vector flelds for oscillatory convection in a square lattice are different than
those for a general rhombic lattice, and the normal forms for the hexagonal lat-

tice are the same in the Boussinesq and non-Boussinesq case.

For three-dimensional oscillatory convection on a square or rhombic lat-
tice, the critical eigenspace is described by four complex numbers:
Yz t)=f (x-’i)[(C z,+ E'wl)eik"x+(C 2o+ E‘wz)eﬂe’+c.c.] . (3-44)
where the linear ODE for the amplitudes is
Z,= 1wz, (3-45)
Wa=—twW,, (3-486)
and o ranges over 1 and 2. In the hexagonal lattice a third pair of amplitudes is

added, 25 and wg, an a ranges from 1 to 3 in the following discussion.
As with two-dimensional oscillatory convection, the normal form is
equivariant under the time translation symmetry:
(awa) (M2 e Ptw,), (3-47)
and the space translation symmetry:
ol eqwa). (3-48)

(2w wa) e

In addition, all the lattices have the 180° rotation symmetry,
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(ZaWa) » (We Zq), (3-49)
and the reflection which interchanges k; and ks,
z,« 2, and w,; «>w, (3-50)
(In the hexagonal lattice z3 and wg are unchanged).
In the square lattice, there is an additional symmetry corresponding to the
reflection which takes
k, > k;,, and ky » —kp. (3-51)
This gives the transformation on the amplitudes,
(z1,w))»(z,w;), and (zg, wg) > (Wa, £a) . (3-52)
This symmetry causes the normal form to be different in the square and rhom-

bic lattices.

3.3.1. The square and rhombic lattices

The equivariant vector fields are highly constrained by the translations.
First, the effect of the translations will be computed, after which the discrete
symmetries will be added in. The complex notation used here makes the com-
putation simple. A general term in the ODE for 2z, is

z'1=Zlnlzzﬂa’wlml'wzmzf(|~"—'1|2- lz21% |w, 13 [wel?), (3-53)
where n, is positive or negative; when n, is negative
2, Ml =g Ml (3-54)
by definition (see (2-247)).

The equivariance condition for the time translations, applied to equation

(3-53), implies

e s, = ("2 )" (e 2) 2 (e tw )™M (e Ptwy) e S (3-55)

_ei(n1+n2—m‘—mz)¢‘ n,

2z, zznzwlmlwzmaf . (3-56)

Therefore,
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ot?t = gimitngmy—maley (3-57)
for all ;. This equation has the simple interpretation that 2, transforms like
2z, under the time translation symmetry. The only way equation (8-57) can be
satisfied for all ¢; is if

1=n,+ngz-m,—ms. (3-58)
Similarly, the equivariance under space translations leads to the condition,

eikl-d___ei[(kld)(n1+m1)+(kg1l)(nz+ma)]_ (3_59)

Since k; and ks are linearly independent, this is true for all translations 4 if and
only if

l=n,;+m,, and 0=ngz+mg. (3-80)

The three equations, {3-58) and (3-80), for the four integers can be solved

so that only one integer is arbitrary and the others are given as a function of

the first. It is reasonable to choose n; as the independent integer, in which

case the other integers are given by

ng=1-n, (3-61)
m1=1_n1 (3'62)
my=n,-1. (3-63)

This means that the ODE which is equivariant under the space and time transla-

tions is of the form

. I o \1-
21= ), 21 Hzaw @) M fallz1]% | 22]3 lwy R Jwel?). (3-64)

ﬂ‘ =—00
It must be remembered that a negative exponent is to be interpreted as

the complex conjugate of the quantity to a positive power. The prefactors of

fn,» written explicitly for a few n,, are
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n;=1 z,

n,=0 Zow | Wa (3-65)

n;=2 z1(2,2,W, w,)
ny=—1 zyw,We(z,Z, W, we).

It is clear from this table that the most general ODE (3-64) can be written as

z,=2,9(@, |21|2: |22|2- |w1|2, lwzlz)

bzgw @y h(Q, |21]2 el w12 |wel®), (5-69)
where
Q=2z,Z,W,w;, (3-87)
and g and h are complex valued functions. Note that the term with n, =2 is
obtained from g =@, h =0, and the term with n;=-1 is obtained from
g=0h=0.
The function & is invariant under all of the symmetries. It is the analog of

g in the hexagonal lattice (see section 2.9). The difference is that @ is complex,

whereas g is real.

The invariant function of the phases is related to @. There are three
translational symmetries, the two space translations and the time translation,
and there are four phases. Therefore there is one combination of the phases
which is invariant under the translations:

=0, Pz, Pw, tPu,- (3-68)
The context should prevent this & from being confused with the $ defined for

stationary convection on the hexagonal lattice.

In the rhombic lattice, the most general equivariant ODE, truncated at
third order, is
z'l=zl[(>\+'i,w)+all21|2+aglz2|2+b1|w1|2+bgl'w2|2]+czzwl'wg, (3-69)
where the coefficients a,,b,,andc are complex. Be warned that the
coeflicients are nof chosen to correspond to the ¢ and b of the previous sec-

tion. The other equations can be found from the discrete symmetries, but they



183

are listed here for completeness:
2p=zp[ (A+iw)+ay |22+ ae] 2, |24+b, | wy|2+be|w |2 ]+e 2w,  (3-70)
Wy =w [ (A=iw)+@ |w, |2+ @e| wy | 2+8, | 2, |2 +82| 25] 2 |+ Ewpz 2, (3-71)
Wa=wa| (A1) +@s | wy|2+8s|w, |2+8, | 2,2 +8s] 2, |2 ]+ w,2,2,. (3-72)
In the square lattice, the symmetry (3-52) leaves z, unchanged, but inter-
changes z; and W3. The effect of this symmetry is most easily seen in the 2,
equation. The result is that
az=b, (3-73)
in the square lattice.
The analysis of this equivariant ODE is quite difficult, and it has not been
completed. Some solutions are known, but the possibility of other solutions

cannot be ruled out. These known solutions are listed below:

® Traveling waves

|z,]%#0, all others zero (AOZ) (3-74)
—=A
Al= —— 3-75
Re{a,) ( )
e Standing waves
z.=w,, AQZ (3-76)
2= _ TRN _ _ -7
4 Re(a1+b1) (3 )
® Traveling squares
Z,=23, AQZ (3‘78)
2= _ RN i
4 Re(a,+az) (3-79)
e Standing squares |
21='w1=22='wg (3'80)
A? — (3-81)

= Re(a +az+b +batc)
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e Standing squares 1I
Zl=m1=i22=—iw2 (3‘82)

) —4x
Re(ai+az+b +bs—c)

A? (3-83)

In the rectangular lattice there are two types of traveling rectangles since
the pattern can move in the direction of the long side or the short side of the
rectangle. These -~ .ce the traveling squares listed above. The standing rec-

tangles are the s. . as the standing squares.

® Traveling rectangles ]

2,=2,, AOZ (3-84)
I ), S .
A Re(a1+a,g) (3 85)
® Traveling rectangles Il
2,=W,, AQZ (3-886)
2_ _ _—RA )
A RE(a1+bz) (3 87)

With the exception of the standing squares, it is trivial to prove that the
above solution types exist. The exotic term, proportional to ¢, is zero for all of
the solutions listed except the standing squares. In all of these cases, the solu-
tion is defined by a single equation, of the form

z',=zl[(}\+iw)+(constant) |zl|2]. (3-88)
so that the solution has

—~\
2 .
2] Re(constant) (-89)

The general equal amplitude solution, (|z,;|%= |2,(?= |w,|?= |w;|?), can

be written as
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z2,=2

w2=§

zp=e-i/2, (3-90)

wp=ei? 2z
The system is written in this way because ¢ is the invariant phase defined in
equation (3-68). When these amplitudes are introduced into the equation for
2., it becomes
2, = z1[(P\+iw)+(a1~lja,g+b1+ba+ce‘“’) |z |2] , (3-91)
and the derivative of the phase of z, is
¢zl=a)+1m(a1+ag+b1+bz+ce‘”)lz |2. (3-92)
A similar calculation shows
Pz, = w+im{a,+az+b,+by+cet?)|z |2,
pw, = —w=Im(a,;+az+b,+be—ce —i8)| 2 |®, (3-93)
Pw, = —o=Im{a +az+bi+bs—ce'?)|z |2,
These equations imply that
b= Pz~ Pz~ Pw,t Py = 2Im[c(e"*—¢%?) ]|z |2= —4Re(c sind). (3-94)
Therefore, assuming that Re(c)#0, there are two solutions: ®=0 (standing
squares 1), or & = (standing squares II).
There are other solutions of the type
2, =W, 2,=Wg, |2,]%#]2,]", (3-95)
but these satisfy a complicated pair of equations. Furthermore, it is difficult to
prove that there are not other small amplitude solutions to the cubic trunca-
tion (3-89). Therefore it is not possible at this time to determine if the cubic

truncation is a normal form.

3.3.2. The hexagonal lattice

The situation on the hexagonal lattice is even more complicated than the

rectangular or square lattice. One result, however, is immediate; because of the
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time translation symmetry (3-48), there is always the symmetry

(zawa) » —(za w,) (3-96)
which corresponds to ¢; =n. This is the symmetry which follows from the Bous-
sinesq approximation. As a result, the normal form is the same in the Bous-
sinesq and non-Boussinesq case. There can be no preference for upward flow in
the center of each hexagon because half a period later the flow has reversed

direction.

The equivariant vector fields on a hexagonal lattice are quite different from
equivariant vector fields on a square or rhombic lattice. An important sym—v
metry for the 2z, equation is the reflection which leaves k, unchanged:

(zliwl)_’(zlvwl) (3'97)
(22.w3) « (23, w3). (3-98)
This forces 2, to be symmetric under an interchange of 2 and 3, so that a typi-

cal term is
g, = [z Mg 2y My, g™ f +[2 e 3]] . (3-99)
where f is an arbitrary function of |z,|? |22]% |2g|? |w,|?% |ws|? and |wg|%:
f:Ré> C, (3-100)
and [2 «» 3] is a shorthand for the interchange (3-81)-(3-82).
The equivariance of (3-99) under the time translations gives
o9t = gt PingtRgTm M)y (3-101)
therefore
l1=n,+ngz+ng—m,—my—msg. (3-102)
The equivariance under space translations gives

oikrd_ il dn 4my) ilkpdingtmy) i(kyd)(ngtms) (3-103)

When kg is replaced by —(k,+k,), the above equation implies

eikld et(kl-d)(n1+m1—n3—m3)+ei(k2-d)(n2+m2—na—m3) (3_104)

for all displacements d, and therefore
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1=n,+m,;—ng—msj (3-105)

0=ng+my—nz—mg. (3-108)

One must solve a system of three equations, (3-102), (3-105) and (3-1086),

for six variable integers. There is a three parameter family of solutions. It is a
nontrivial condition that all of the variables are indeed integers. For instance,
2

arbitrarily choosing n;=ng=n3=0 leads to the solution m = :li— Mmg=mgz=~x,

which is not an integer solution.

The integer solutions of the system (3-102), (3-105) and (3-106) are given

by
n,=1+p—-q-r
nz=p+q
Mng=p +7r
m;=p+q+r (3-107)
Mmz=p-—q
mg=p-T

where p, g, and 7 range over all the integers. Those who wish can skip the
proof and go to the table of results below.

To find the integer solutions of the system, first solve for n; and m,;. This

can be done by taking the combinations (3-102) + (3-105) — L (3-1086):
2

n,= 1—%[(n2+n3)—3(m2+m3)] (3-108)
m, = 1[3(ngytng)—(ma+ms)]. (3-109)

For the moment, let
Natng=0, and my+mg=7. (3-110)

In order for n; and m, to be integers, it is necessary that
0-37=0 (mod 4), and 30~7=0 (mod 4). (3-111)
Since —3 = 1(mod 4), these are both the same condition:
o+7=0 (mod 4). (3-112)

All such pairs g and 7 can be written as
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oc=2p+l ,and T=2p—! (3-113)
for some unique pair of integers p and . Obviously, all integers p and [ yield

an integer solution for ¢ and 7. The system of equations is now

'ng+'n3=2p +1 (3'114:)
’TYL2+TVL3=2_’p -1 (3"115)
0=n2_ns+mz_m3. (3'116)

This is a system of three equations for six variables, so there is a three parame-

ter family of solutions. In terms of the integer parameters p,g,andr, the
solutions are

p=p,l=g+r, (3-117)

ng=p+q ., Ng=p+r, Mmg=p-—q, Mmg=p-—T. (3-118)

These values are then substituted into (3-108) and (3-109) to obtain the

solutions listed above, (3-107). This ends the proof.

The following table shows the terms of order five or less. When ¢ #7 there

is another term with [2 «» 3], which comes about when ¢ and r switched.

p q T | mn, M Mg ™m; Mz Mg Z,x
0 0 0 1 0 0 0 0 0 Z,
0 1 0 0 1 0 1 -1 0 Zgwle

"1 0 0 0 —1 ‘—1 _1 _1 _1 Ezfsmlwzms
0 -1 o0 2 -1 0 -1 1 0| 2,°Z,w,w,

-1 1 -1] 0 0 -2 1 =2 0 Z 52w 052

Table 3-1. Equivariant terms for oscillatory convection on a hexagonal lattice.

The vector fields which are equivariant under the symmetries appropriate
to normal forms for oscillatory convection in a hexagonal lattice can be written

as
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z,l = i 21(1+P_q_r)z2(p+Q)zs(p+r)w l(p +q+1')w2(p "Q)ws
+[2 « 3]

P.g.7=-co

® 7 foar| (3-119)

where f, ., are arbitrary complex valued functions of |z,[% [2,|?% |=25]?
lw, |2 |wgl? and [ws]?:
fpqrRE- C. , (3-120)
The equations for the five other complex amplitudes follow from the
discrete symmetries: the 180° rotation,
2ae W,, a=1,2and 3, (3-121)
and the 120° rotation, or cyclic permutation symmetry,

(z1,wy) = (22, we)
(22, wp) » (23, w3) (3-122)

(23, w3) » (21, wy).
Truncating the normal form to third order gives

2=z, (A\riw)+ay] 2, [ 2+as(| 222+ | 25]2) + by w24+ ba(|wa | 24+ |wg?) ]

+c (zw Wt zzw , Wg) . (3-123)

where the coefficients a4, b,, and ¢ are complex.

In addition to the solutions present on the rectangular lattice there are

hexagonal solutions to the cubic truncation:

® Traveling hexagons |

z,=25=25, AOZ (3-124)
—3A
*= Rela.+2ad 3-125
A Re(a1+2ag) ( )
® Standing hexagons I

Z1=W,=2=Wa=23=Wg (3-126)

2_ —BA ]
A Re(a1+2ag+b1+262+29) ' (3 127)

® Standing regular triangles ]
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zl=—'wl=22=—'ﬁ'}2=23=—w3 (3‘128)

~BA

= . 3-129
Re(a,;+2az+b +Rb+2c) ( )

AZ

Note that the ‘“traveling hexagons' are similar to the stationary triangles
(see section 2.9.2), except that ¢ increases linearly with time. The standing
hexagons and regular triangles are have the same planform as the correspond-

ing stationary patterns, except that the amplitude varies like sin{wt ).

There are undoubtedly more types of traveling and standing hexagons, but
the dynamics of the phases is quite complicated. A full analysis has not been
attempted. There are six phases and three translational symmetries, so there
are three invariant functions of the phases. It is evident that the cubic trunca-
tion is not sufficient, however, because the standing hexagons and standing reg-
ular triangles have the same amplitude squared (3-127) and (3-129). The fifth
order terms listed in table 2-1 with p = -1 cause the amplitudes of these two
solutions to be different, since they involve odd powers of w,. Although the
normal form for this example is not known, the solutions listed here, (3-74)ff
and (3-124)ff, are sure to survive when the higher order terms are added,

because of their symmetry.
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Chapter Four

Calculational Techniques

This chapter describes how to generate the nonlinear terms in the infinite
set of ODEs corresponding to the partial differential equations (PDEs) of con-
vection. In addition, the coeflicients of the normal form for doubly diffusive
convection are calculated using the center manifold reduction of the infinite

dimensional set of ODEs.

4.1. Nonlinear couplings

In Chapter One the linear ODEs for any (k,n) spatial mode are presented
for the simplest boundary conditions. In this section, the linear terms are
dropped to accentuate the nonlinear terms. All of the special cases of convec-
tion can be treated together, since the nonlinear terms are the same. The ODEs

of interest are

Z-VxVxa=lin, —2-VxVx[(a-V)u] (4-1)
Z-Vxa = lin, -2 -Vx[(uV)u] (4-2)

3 = lin. —u-Vo (4-3)

£ =lin. —u-V¢. (4-4)

where the overdot represents the partial time derivative, and ‘*lin.’’ replaces
the linear terms. The fields are represented as sums of the complex plane
waves

exn= pt(kxnz) (4_5)

The velocity field is

u= ) f: [Wirn Win+¢knZinl =YY, Uxn, where (4-8)

kEZz n=-—oo k
k€=0
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Win =(—kn +|Kk|?®Z)ey, are the vertical velocity modes, (4-7)

Zyn =(Zxk)ey, are the vertical vorticity modes, (4-8)
and wy, and ¢y, are time-dependent complex amplitudes. In the sums, k
ranges over a lattice in the plane, so all fields are doubly periodic, and n goes
from —oo to co. The temperature and solute variations relative to a linear

profile are

ﬂzzk:z:('ak.nek.n)- and (4-9)

$=¥Z(€k_nekn)- (4-10)

n

The pure exponential notation has many advantages over sines and
cosines. Two modes, (k,n) and (k',n'), only couple to one mode, (k+k',n+n'),
whereas the product of two sine functions involves the sum and difference of
the two arguments. In addition, the curl and divergence operators are simpler

in the pure exponential notation because ''V” is replaced by ‘i (k+nZ).”

Starting with the simplest nonlinear terms, the ¥ equation is

Z Z ('ék.nek.n) = lin. _gz %: zuk‘.n"v(ﬁk".n“ ek",n")- (4' 1 1)

k ‘n"
Due to the mode coupling property of exponential waves, only k' =k-k' and
n'"=n-n' contribute to the (k,n) term on the left hand side. Each such term

can be written separately:

Yy Cxn = lin. - Y up V(%% kn-n Ck-kn-n) (4-12)
kKn'

The amplitude ¥y, has no spatial dependence, therefore the gradient does not
affect it. The nonlinear coupling needed for both the temperature and solute

equations is
U Vexwnn = | Wi nWien +eknZin )i k-K+(n-n)2 |exwn n (413)
=if(n |K|?-n'kk)wg, +H{ZKXK)ép o ]exn. (4-14)

Therefore, the nonlinear equations for the temperature and solute variations
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are
Byn =lin. iy, N [(n | K 2-n'kK)wy nt+ (EKXK) b n 00-tkn-n»  (4-15)
kKn'
b =lin. ~iL V(0 K2 -n 'k k) wy n+ (2 KXK) i Jéx-wnn- (4-16)
K n'

A similar procedure works for the velocity. Recall that repeated curls are
used to eliminate the pressure term and separate the vertical velocity and vert-
ical vorticity fields:

Z2VxXVxuy, = [K[*(| k|2 +nP iy ep, =lin. =Y Y Z-VXVX[ (g o V)Ug g none] (4-17)
kn'
i'vxuk.n =1 I kl zé-k,nekn =lin. —Z zi'vx[(uk,n"v)uk—k.n—n’] . (4"18)
K n'
Expanding the nonlinear terms and isolating the time derivatives of the ampli-
tudes, this implies

Wy nWk-K.n —n'[(wk‘.n"v)wk—k‘.n —n']

WV nn
) i €. _x-n a. — ( K.n k-K,n-n )
Wy, = lin. MRS, Z VxVx}l_;g + Wk n—n +(Zan V) Wy (4-19)
+€k,n'{k—r,n—n'[(Zk,n"V)Zk—k,n—n']
and
wk‘.n‘wk—k‘,n—n'[(wk’.n"v)wk—k‘.n—n']
. . . x-n . (Wk’.n"v)zk—k’.n—n'
=lin, - - b -
¢kn = lin i k| ? z ng; + Wy nCk-Kn-n +(Zy e —nV)Wien (4-20)

+eenChkn-n] (ZinV)Zkwn-n]

In the sums over k' and n', every pair of modes adding up to (k,n) is counted
twice. The WW and ZZ terms on the right hand side of equations (4-19) and (4-
20) can be symmetrized,

(Wi VWi o> L[ (Wi V) Wi o (Wi V) Wi | (4-21)

(Zacn V)Zw > L[ (Zan V) e+ (T V) Zacn | (4-22)
If each (k,n) , (k',n') pair is counted oniy once the factor of one half can be
dropped for these terms. Each pair must be counted twice for the ZW term,

however.



It is useful to have a notation for the nonlinear couplings. Let

Nw:ww - €_x-n
k'n' k-K.n-n’ I k|2(lk|2+,’12)

’z‘-VxVxé-

wiw( - € _y-n .
Nk’,n’;k—k‘.n -n' = K| 2( K| 2+n2) Z-VXVx

wiL - 2-k-n ~ 1
Nl’.n';k—k‘.n—n"’ [kI2(|K[2+n2) z V><V><E

N Cww e ~k-n_ -~

Knik-Kn-n' " :l—k_l 7 Z2°Vx %[(Wk',n"v)wk—k,n e+ (Wexn —-n"v)wk‘,n']

¢Ewé € _g-n .
N > k:'"P"Z'Vx]:(Wk‘,‘n.''V)Zk—k‘,n—zu"*'(Zk—k,'n—71."V)Wk‘,n':|

Kn'k-kKn-n' — —:"—l_kl P

(4149 “k-n ~
Nk‘.n k-Kn-n' " 1:__"— Z-Vx flg-[(zk'.n"v) Zk—k.n —n'+(Zk—k‘,n —n"v)zk‘,n']

e.we

Nk‘.n’;k—k.n - <e -k-n )wk.n 'Vek—k‘.n -n'

e:{a
Nk’,n';k—-k,n - = (e ~k-n )2k Ve k-Kn-n*-
Using these definitions, the ODEs can be written
w ww
Ny nxten—n (Wi ) (Wi n-n)
ww¢

Wiy =lin, "%}E +Ny nokwnn Wren) (Ck-kn-n)
~

+N:_:F;k_y,n —-n' ({k‘.n')(g‘k—k‘.n —n')

Cww
Nk‘,n';k—k',n -n' (wk’.n') (wk—k‘,n —n')

é‘kn =lin. —gz +Nk¢::'{;k_y'n -n’ ('wk’.n‘)(fk—k'.n—n')

"‘N;ﬁ;k-mn o {xa ) Cu-wn-n) ‘

e we y
Nk.n';k—k.n -n' (wk.n')(ﬂk—k‘,n —n')

Bn =lin. =N |

(wk‘.n"v)wk—-k.n -n'
+ (Wk—k‘.n —n"v)wk'.n’

(Wen V) n-n
+(Zy-wn-nV) Wy

(Zk,n"v)zk—k‘.n -n’
+{Zgwn-n'V)pn

Kk n +Nk,n';k—k‘.n —-n' ((k‘.n') ('ak—k'.n—'n'),
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(4-23)

(4-24)

(4-25)

(4-286)

(4-27)

(4-28)

(4-29)

(4-30)

(4-31)

(4-32)

(4-33)
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6. we

Nenkknon Wkn)Exxn-n)
Nz lin, 3| KRR TR, (4-34)
@:fe
K +Nk,n';k—k.n-n'<¢k.n')($k—k,n—n')

The velocity couplings can be computed with the help of the identities
ZVxUx(Aeg,) =(-kn +|k|*Z)-Aey, (4-35)
Z-Ux(Aeg,)=1Z-kxAey,, (4-38)
where A is a constant vector. The result of a few pages of straightforward cal-

culation is:
Ak (n R k| 2+n? K [2-nn' | k+k'|?)
(n+n') +{n2+n'?) | k|?| K |?
n+n') | k|?|k'|?
—-k-k'(n|kK|?+n'|k|?)

wiww 1

Nk.n;k.n' = Ecw

(4-37)
+|k+k'|? ]

wwe - [man)[—2nkk+(n'—n)|Kk|?]
Nkn;k‘.n'_cw (z'ka)[—H(lztk-*-k']z (4-38)
N:,fin C (Z-kxk')?2(n+n") (4-39)
tww _ 1 N ,
¢w¢ 1|2 ' \2
Numgn = lk+k'|2 (K [2+kK)(nkk-n'|k|?)+n (Zkxk)?]  (4-41)
€49 1
N = o0 = (Z-kxk')( | k|*— | Kk'|? 4-42
knk.n' 21|k+klz (Z )(l l ]k’ ) ( )
Npnpn =i(-nkk+n'|kl?), and (4-43)
N::?u.n' =1(2-kxk'). (4-44)
The first three expressions above use the temporary notation:
" (4-45)

= Tkt |2 |kt [P (ntmyE]
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These nonlinear couplings can be inserted into equations (4-31), (4-32) and
(4-33) to give the full infinite dimensional ODE. The last two equations are
included for completeness, although the nonlinear equations for 4 and ¢ have
already been written {(4-15) and (4-18)). Note the difference between equation
(4-13) and (4-43). In the first, the modes are chosen so that they couple to
{(k,n). This is desirable for writing the full equations symbolically, such as equa-
tion (4-15). In equation (4-43), k and k' are only dummy indices. This represen-

tation is easier to use when the truncated ODEs are generated by hand.

Although the nonlinear couplings (4-37)-(4-44) may seem complicated,
they are quite compact. Ken Rimey and John Salmon used the vaxima computer
algebra program to compute these nonlinear couplings. They used sines and
cosines rather than pure exponentials and it took approximately 3 pages to

display the results.

4.2. Symmetries of the ODEs
In this section the symmetries of the infinite dimensional ODEs are dis-
cussed. Some of the symmetries are associated with the constraints, such as
boundary conditions. For these symmetries, the system must remain invariant
under the symmetry transformation. Other, more general symmetries are also
discussed.
The ODEs can be written symbolically as
a=t(a) (4-48)
where a is an infinite dimensional vector of amplitudes. The symmetries dis-
cussed here are linear transformations of the amplitudes,
a - va, (4-47)
which commute with the function f:
f(ya) =yf(a), or foy=7yof. (4-48)

This says that f is equivariant under the symmetry, or that 7 is a symmetry of
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the ODE.

42.1. Constraints

There is no a priori guarantee that the nonlinear terms preserve the
stress free boundary conditions. If the boundary conditions are not preserved
then lLagrange multipliers are needed, and the problem become intractable
using a “‘pencil and paper” approach (See the discussion in Chapter One). The

boundary conditions are satisfied if

WygntWy 5 = 0
$en—Ck-n =0
’lsk_n +13k_n =0
fxntéx-n=0.

(4-49)

These constraints are stronger than the free boundary conditions, but they are
necessary for the modal techniques used here.
It will be shown that the boundary conditions are preserved since the non-

linear terms are equivariant under the Z; symmetry

Wgn > ~Wyg-n

(k.n - +¢k.—n (4 50
ﬁk.n Ind _"3&.—11 B )
$kn ?* ~fx-n-
The equivariance follows from the symmetry of the couplings:
Nw:ww, Nw:“, Ntzwt, and N°™ are odd, and (4-51)
NY™¢ NEW, NY¥, and N°**° are even, (4-52)
under the interchange (n,n') »(—n,-n'). For example,
www w ww
Nk.n KT _Nk.—n;k‘,—n' (4'53)
wwl wwd
Nynxn =N nx-n ete (4-54)
To see how this symmetry works, consider a typical set of terms:
. ww¢
Win = =LY Np o ke n{Wrn) (Conn)+ - (4-55)
kK n'

The left hand side of the equivariance condition (4-48) is
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Wyn (7&) = '—gE'N:':f:i_k«'n_nv(_wk',—n')(<‘k—k’.—n+n')+ T (4’"56)
= (PEE N ko (e Csenen )t (4-57)
On the right hand side,
Vb (a) =ty (4-58)
= DR EN ko nn (W) Cewmin )t (459)

Since N¥%#{ is even under the interchange, the equivariance holds. It is fairly

easy to verify that all of the nonlinear terms are equivariant.

As a consequence of the equivariance, the fixed point set,
A, ={all a such that a~ya =0}, (4-60)
is invariant under the dynamics. The proof is simple:
£ (a—ya) = f(a)~yK(a) = f(a)-f(7a) (4-81)

=0 when restricted to aeA,. (4-62)

Thus, if the initial condition is on A,. then the trajectory stays on A, for all time,
and A, is invariant. The boundary conditions (4-50) imply that the system is
constrained to the fixed point set. Due to the symmetry, the boundary condi-
tions are automatically preserved by the dynamics. It is worth noting that,
when the rotation vector is not vertical, the lingar ODE is not equivariant under
this symmetry and the strong form of the boundary conditions {4-50) cannot be

used (see Chapter One).

The fields in the original PDEs are real. This implies another constraint on
the amplitudes:

Wyp—W_g-pn=0
{ent{k-n =0
Vgn—V k- =0
fxn—E-x-n = 0.

(4-63)

As with the boundary conditions, this constraint is built into the equations
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by a Z, symmetry. The equations (4-31) through (4-34) are equivariant under

Wyn > W_y p

<-k.n - —E—k.—n

_ 4-84
Byn > By (4-64)

fxn > Ekn-
The requirement that the physical fields are real constrains the system to be on
the fixed point set of this symmetry. The equivariance follows from the follow-
ing symmetry properties of the nonlinear couplings under the interchange

k- -k, n » —n, and complex conjugation,

NY™ NV N and N°™ are even, and (4-65)
NN N and N°%° are odd. (4-686)
It can be explicitly verified that
www S wiww
Nk,n;k’,n’ = N—k.—n;—k’,—n' . ete. (4'67)

The proof of equivariance, for a typical term, proceed as follows:

The left hand side of equation (4-48) is

D DNk ek n (o) (Foienin)t (4-68)

é‘k‘n (73)

1444 < =
e _2ENk,n';k_kt_n_n'({—k,—n)((—k+k.—n+n')+ . (4'69)
K n'
The right hand side of the equivariance condition is

7é-k.n = _?—k.—n (4-70)

= COPENA e G Gormend o (47)

The equality follows since N(:“ changes sign under the symmetry. Note that the
number of ¢’s in the nonlinear coupling determines the parity under (4-64),

with an extra minus sign added for the complex conjugation.

All of the fields are real in the initial condition, so the system is in the fixed
point set of (4-64) at ¢t =0. The equivariance guarantees that the fields will stay

real at alllater times.
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4.22. Other symmetries

There are other symmetries of the equations which do not correspond to
constraints, and consequently the system is not necessarily on the fixed point
sets of these symmetries. Note that all of the N** terms are pure imaginary,

where z is one element of the set {w,é,e{. This implies the symmetry

ay, » —ay,, where (4-72)
Wykn
(-k.n

axn =g | (4-73)
fxn

Note that ay, is a four-dimensional vector, while a in equation (4-84) is an
infinite dimensional vector. The amplitudes are not all pure imaginary for an
arbitrary initial condition, although-the origin of the coordinate system can be

chosen so that two amplitudes are pure imaginary (see Chapter Two).

Another symmetry is related to the Boussinesq approximation. The Bous-
sinesq symmetry (1-161) transforms the amplitudes as follows:
ayn » (—1)" g (4-74)
The equivariance follows since (k,n) and (k',n') couple to (k+k',n +n'):

Win (7a) =lin. _EZN:.::;—k‘.n—n’(_l)n’wk.n'(_1)n_n’wk—k‘.n—n‘+ e (4'75)
Kn'
= (1) gy = yWkn. (4-76)

Since the critical modes all have n =1, this symmetry guarantees that the nor-
mal forms are equivariant under (z,, zz) » —(z,, z3), where {z,, z,) is the com-
plex vector of critical roll amplitudes. This is called the Boussinesq symmetry
in this dissertation. When the Boussinesq approximation is not valid, the criti-
cal eigenfunctions are not odd under the symmetry (4-74). (Typically the sym-
metry (4-74) does not hold for the linear terms, and the coefficients in the PDEs

are not constant.)
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The PDEs are equivariant under the Euclidean group in the horizontal
plane. The translations in the plane,
x - x+d, (4-77)
correspond to the phase shift
ay, - e'fday, . . (4-78)
It is simple to prove equivariance under this symmetry since the subscripts
(k,n) do not change:

ék,n (73) =lin. +Z2N(eikdak,n')(ei(k—k)dak—k,n —n') = eikﬂakn = 7ék.n ' (4"79)

kn
where N represents the coefficients.

In the doubly periodic spatial domain implied by the lattice of k vectors,
only those rotations which take the lattice into itself are allowed. The 180°
rotation always takes the lattice into itself. This is x- —X, or equivalently
k » —k, which corresponds to

ay, 28 g5 (4-80)
It is easy to verify the equivariance under this symmetry since N** are all
unchanged by k- —k and kK'-» —k'. This symmetry is redundant, however, since
it is the composition of (4-50), (4-64), and (4-72).

An explicit representation of the lattice of k vectors is needed in order to
discuss the symmetry of the ODEs further. Chapter Two includes a discussion
of double periodicity in the horizontal plane. The important results are
repeated here: Doubly periodic functions in the plane can be represented by a

Fourier series,

Y(x) = %%eih, (4-81)

where the sum over k includes all vectors in a lattice,
k=-»lk,+mky. (4-82)

The sum over kis therefore a sum over two integers,
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(4-83)

o 5

ko

Ill Mg

ca m oa

As a result, the amplitudes and nonlinear couplings can be labeled by 3 integers

rather than (k,n):

ak.ﬂ i al.m‘n [] and (4-‘84-)
T:zT zTT
Nk.n;k‘.n‘ - Nl.m nl'mint (4'85)

The generators of the lattice, k, and k; are not uniquely determined. For
the square, rhombic, and hexagonal lattice one can choose the two generators
so that | k;|?=|k|? This is why these lattices are important for pattern selec-
tion: both k; and k, can have the critical wavenumber. Therefore, assume that

11 12 = [l | 2 = kP (4-86)
(The rectangular lattice, where k; -k, =0 and |k, [?# | k,|?, is important for many
of the finite amplitude instabilities discussed by Busse, although numerical

techniques are needed to analyze these instabilities.)

The different lattices are distinguished by ¢, the cosine of the angle

between the two k vectors,
k, -k, = gk, (4-87)

and ¥, defined by

Z 'k, Xkg = Yk~ (4-88)
These definitions are used by Schliiter ef al.. Although these lattice parame-
ters are clearly related by ¢?+¢?=1, the sign of ¥ is not determined by ¢. (In
rotating convection the sign of ¢ is important.) The square lattice has ¢ =0 and

the hexagonal lattice has ¢= 3:;—. All other angles give rhombic lattices, with

the exception of ¢ = £ 1, which is excluded since in this case there is only one

independent k vector.

It is now possible to discuss more of the symmetries of the infinite dimen-

s'onal ODEs.
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For any lattice, the ODEs have a useful discrete symmetry when the dis-
placement d in equation {(4-78) is either

_m . .
d—z,ord—z. (4-89)

where K, wg=2md, s Recall from equation (2-99) that w; and w, are the two
real space lattice vectors that define the double periodicity in the plane. The
symmetries corresponding to the two translations are
Bumn > (~1)'2y . and (4-90)
QG mn 2 (-1 mn (4-91)
respectively. These symmetries can be combined with (4-74) to yield
A (D g (4-92)
Although this last symmetry is not independent of the others, it has the advan-
tage that in the rhombic and square lattices the critical modes are a;o; and
ag ;.. which are on the fixed point set of (4-92). Note that on the hexagonal lat-

tice a_, .;; is also a critical mode, so the critical modes are not on the fixed

point set.

There are no proper rotations, octher than the 180° rotation, which leave
the rhombic lattice invariant. A reflection in the horizontal plane through the
line bisecting k; and k; does preserve the lattice, since it is equivalent to

k; > ks. (4-93)
(Remember that |k;}?=]|ky|%.) In the nonrotating layer the PDEs are equivari-
ant under reflections, and the ODEs have the symmetry

Wy mn Wy in
$immn @ ~$min 4-94
"St.m,n - ﬂm,l,n ( ) )

El.m.n i em,l.n-

The equivariance is due to the symmetry of the nonlinear couplings:

N*™ N N

www &ww

,and N°™° are even, and (4-95)
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Nw:w(. Nt:ww. NC“, and Nezte are odd, (4-98)
under l «»m and l'«<m'. In other words,
w . ww w ww
Nl.m,n;l’.m’.n' =Nm.l.n:m'.L',n' , ete. (4'97)

There is another reflection symmetry through the vertical plane perpen-
dicular to that of equation (4-93). This is obtained by composing (4-94) with
Axn > A-gn:

Wimn > W-m,~ln

& mn _('—-m.—l,n (4 98)
Bmn 2> Bm -t
El,m.n - f—m.-—t,n :

When the layer is rotating about the vertical axis the reflection (4-94) or
(4-98) combined with -2 » —2-Z leaves the ODEs unchanged. This is not a true
symmetry, however, because a parameter in the equations is changed, not just
the time dependent variables. This is called a pseudo —symmetry of the ODEs in

this dissertation. A pseudo-symmetry relates one physical system to another.

(In this case the two systems are rotating in opposite directions.)

A related pseudo-symmetry comes about from interchanging the labels of
k,; and kg, Here the pseudo-symmetry relates two different k space lattices, with
different lattice parameter 7, whereas the reflection symmetry (4-94) is a
transformation of the amplitudes on a single lattice. The new definitions of
k; and k; define a pseudo-symmetry transformation:

Qmn>8nin
[y -9l (4-99)
[y~ -yl

The square brackets indicate changes in the parameters of the system. The
ODEs are equivariant under the pseudo-symmetry. An important point is that

¥ - —y only on the left hand side of the equivariance condition:
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. wwl
wl,m,n(am.l,nw-—w]) =l 2 NL"m'_nv;l_;',m_mv_n_n'[—w](wm’.t'.n’)(fm—m’,l—l’,n—n')+ e
'm'.n
(4-100)

The right hand side of the equivariance condition is

. ww
Wmin =l 2 Nm’.l'.n‘;m—m'.l—-l',n—n’(wm’.l'.n')(fm—m’.l—t'.n—n')+ T (4'101)
‘mn

The pseudo-equivariance follows since all of the nonlinear couplings satisfy

N;Z NZ= (4-102)

L m ¥~ minm ln(-¥]
This in turn follows since k'k' and Z-kxk' are unchanged under

k=(lk+mky) > (L ks +mk,;)
K=k +m'ks) » (I'ks+m 'K;)

k; 'k - ky°k, (4-103)
klxka - kzxkl .
Note finally that the nonlinear couplings also satisfy the relation
TZT T.TT
N‘ mnitmonled] = N—L,m ni-lmnl-e vl (4-104)

Therefore the ODEs have the pseudo-symmetry which comes from relabeling k;
as —k;:

A mnay m.n
e~ -9l (4-105)
[y~ -v].

For future reference, the symmetries of the ODEs for the rhombic lattice, along

with the equation numbers which identify them, are listed in table 4-1.



Symmetries of the ODEs
which preserve constraints
equation:  (4-50) (4-64)
Wygp > ~Wg-_q W_g-n
(k.n - (k -n _?—k -n
Bgn >  —Vx-n Bk -n
fk.n i '_fk.—n -k.-n

Symmetries of the ODEs 11

equation: (4-72) (4-74) (4-78) (4-80)

ayxn —apn (__1)11. Ak n gtkd axn A-kn

Symmetries [and pseudo-symmetries] of the QDEs Il

el - —p]

y->—y] [¥--y]

equation: (4-90) (4-92) (4-99) (4-105)
Qmn? (—1)ma£,m,n (_1)L+m+nal.m,n Amin A_immn

Symmetries of the ODEs in a nonrotating layer
(In a rotating layer include [Q-Z > —-Z])
equation: (4-94) (4-98)
Wimmn Wmin W —in
$tmn 2 ~{m.in ~$-m.~Ln
Bman Fm.im Bom .-t
fima fmin £-m.-tn
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Table 4-1. The symmetries of the infinite-dimensional modal convection equa-

tions, equations (4-31) through (4-34).
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4.2.3. Special symmetries of the square and hexagonal lattices

There are proper rotations of the plane that leave the square and hexago-
natl lattices invariant.
For the sgquare lattice the 90° rotation about the vertical axis is a true
symmetry. This is
Y mn B min- (4-108)
The hexagonal lattice is preserved by 60° and 120° rotations. (The 60°

rotation is the same as a 120° rotation followed by a 180° rotation.) When the k

vectors are chosen such that ¢ = —é—, the 120° rotation corresponds to
k »kp
ke » ~(ki+ke) (4-107)
which implies the symmetry of the CDEs under
X{Ymn ?A-mi-mn- (4-108)
The above symmetry corresponds to {(4-107) since
a0, 8g11:8nd ag 2@ ;- (4-109)

To prove that the transformation (4-108) is truly a 120° rotation, note that it
preserves the length of the k vectors,
|tk +m g |? = | -mk +(l -m)ke|? (4-110)

and that three applications of this symmetry gives the identity,

)L

The equivariance under the rotations follows since the couplings N depend

~-l+m
-1

L
> [m] (4-111)

only on the dot product and cross product of the two k vectors.

This ends the discussion of the symmetries of the infinite dimensional set
of ODEs. (There is no way to prove that all of the symmetries have been exhi-

bited, however.)
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4.3. Modal truncations

In this section the infinite dimensional ODEs for doubly diffusive convection
are truncated, keeping all modes which contribute to the normal form at third
order. The symmetry of the critical eigenspace is used to predict what modes

are needed in the truncation.

The results of Chapter Two show that for stationary convection on the
square or rhombic lattice the normal form is cubic in the critical amplitudes.
For Boussinesqg convection on a hexagonal lattice, the normal form also has
fifth order terms, but the third order terms determine if rolls or equal ampli-

tude solutions (hexagons and regular triangles) are stable.

If the critical amplitudes are O(¢), then only the modes with an amplitude
of O(g) and 0(£?) are needed to compute the normal form to third order. (The
product of O(e) and 0(&3) is O(e*), which can be ignored.) All possible couplings
of two critical modes generate the O(s?) modes. For Bénard convection (and
doubly diffusive convection) the critical modes are

Win, Bra, ((and £xn), (4-112)

where |k|®=Landn = +1. (4-113)

L
2
The following discussion will concentrate on doubly diffusive convection; Bénard

convection can be obtained as a limiting case.

Convection in a rotating layer is more complicated since the ¢x, mode is
also critical, and |k|?# ;— at the onset of convection. The normal forms for the
rotating layer are also different; this case is discussed in Appendix B.

Let k, and k; be two critical vectors which generate the ZZ? lattice in the

plane:

|k 2= k| 2= L (4-114)

The vertical vorticity mode is not in the critical eigenspace; therefore the

8
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following notation is convenient: Let

Wy n Wi .m.n
Cxn ={Vkn |, and ¢ mn= % mnl (4-115)
gk,n sl.m.n

In this notation the critical modes of doubly diffusive convection are are e;,
and cg, ;. With this notation, the constraints on ¢;,, , can be written concisely,
since the ¢ mode is eliminated. They are
Cyn =—Cx-n=—C_kg-n=C_kn- (4-118)
Using the mode coupling property of the nonlinear terms, the second order
modes which can be generated from e, and ¢g; ; are
302, Ao22, A 12, )12 g0z (4-117)
az,0,0. 8020 41,10, &1,-1,0s 80,00 (4-118)
and the other modes which follow from the constraints.
The critical modes do not couple to appz and agzz because the velocity

field is divergence-free:

(Ugn V)Ugn = [ Uy -K+nE) Jug, =0 (4-119)
(uk.n 'V)ek,n = [uk_n (k+n§)] Cxn = 0. (4—-120)
The egp modes are all zero due to the constraint ey, = —cg-,. Note, however,

that the vertical vorticity modes with n =0 do exist with the free boundary con-

ditions. Furthermore, the Wy, and Zy, fields vanish when k=0.

From the above considerations, the possible second order modes are
a2, a,-12, Yooz f0,0.2 (4-121)
¢2.00: 020, $110. @and {yq0- (4-122)
It turns out that the ¢ modes do not enter at second order. One can verify
this by computing the quadratic couplings directly from equations (4-40)-(4-
42), but the same result follows from symmetry considerations. The next sec-

tions give a theoretical discussion of the center manifold calculation in the
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presence of symmetry.

4.3.1. The center eigenspace and center manifold

It is important to realize the distinction between the critical modes (4-
112), and the critical eigenspace, or center eigenspace (£,). The null eigenvec-
tors of the linear problem span the center eigenspace. Let X§ be the null eigen-
vector of L ¢, and Lg,; ;.

L,0.X§=0, and Lg;,X{=0. (4-123)
The "r" denotes the right eigenvector. Choose XJ to be real (this is always pos-
sible). The amplitudes of the two critical modes are complex numbers
z, and 2. Therefore E, can be identified with the space C?:
Eo~(21,22), (4-124)
where
€101=2,X3. Co1,1 = 22Xq, (4-125)
and all other amplitudes are zero, except those related by constraints.

The center manifold (W), introduced in section 2.1, is the invariant set
(under the dynamics) which is tangent to E, at 0. There is a mapping from the
critical eigenspace to the space of amplitudes,

g:F; - {al, (4-128)
such that the center manifold is the image of the center eigenspace

W, = g(E). (4-127)
This is because the dynamics on the center manifold are so slow that all of the

perpendicular directions collapse down to #,; on a much faster time scale.

The function g(z;.,z;), called the center manifold function, has the com-

ponents
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c101(21.22) =2, X5+ 0(2,]2,1? z,]22|%)
c0.1.(21,22) =2 X5+0(22| 2% 25| 2,]7)
ay12(z1,22) = 0(2,22)

a;-12(21.22) = 0(2,25)
ag02(21,22) = 0(] 2% |2.]?)

etc.

(4-128)

The Taylor expansion of g to second order is sufficient for the calculation of the

normal form at third order.

4.3.2. The symmetries of the center manifold

If the ODE is equivariant under a linear transformation 7, then so is g:
EeY =708 (4-129)
In addition, the center eigenspace is always invariant under the symmetry 7:
£, =vE,, (4-130)
since if a is a null eigenvector, then vya is also a null eigenvector. As a conse-
quence of (4-129) and (4-130), the center manifold is invariant under 7:
We = g(E) =glvE:) = ye(E,) =y We. (4-131)
For some symmetries the center eigenspace is in the fixed point set,
E, cA,, (4-132)
i.e.if ae F;, then a=va. In this case W, is also in the fixed point set of y:
g(a) = g(ya) = 7g(a). (4-133)
Therefore
W CAh,. (4-134)
The main results on the symmetries of the center manifold are summarized in

the box below:
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Let a=f(a).
If fory=7y<f, then ¥, =y W,.

If, in addition, E; CA,, then W, CA,.

The above discussion does not constitute a proof, and from a mathematical
point of view the boxed statements are not strictly true, because of a technical-
ity. The problem is that the center manifold is not uniquely defined. However,
from a practical point of view it is not a problem that g is not uniquely defined,
since all possible g's have the same Taylor expansion to all orders (see Marsden
and McCracken 1976). The following example illustrates the problem: Consider
the ODE in the plane (z,y) e R

z =—x3

. 4-135
Yy =Y. ( )
This ODE has two reflection symmetries,
o (4-136
Y2y, -136)
and
o (4-137
Y-y -187)
The solutions can be easily found,
1
z{t)= ——=——— . 1)=0,
() NEE or z(t)
g (t)=Aet, (4-138)

where £, and A are arbitrary constants. The time can be eliminated, giving the
equation for the trajectories,
y=Ae /% orz=0. (4-139)
The line z =0 is the stable manifold of 0, while any of the other trajectories is
half of a possible center manifold. Equation (4-139) is the classic example of a

nonzero function with a Taylor expansion which is zero to all orders. The Taylor

expansion of any of the center manifolds yields the line y =0, which satisfies
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the boxed symmetry properties listed above.

Fig. 4-1. The phase portrait of system (4-135). One of the possible center mani-
folds is indicated by the bold lines. Note that this choice of #, is not invariant
under {4-136), and it is not in the fixed point set of (4-137). The canonical
choice for W, is the z axis, which does have these symmetry properties.

For doubly diffusive convection on a square or rhombic lattice, where the
critical modes are e4,04+-; and cp,+;,+-1. the center eigenspace is in the fixed
point set of

& mn (=1 Ay (4-140)
as well as the two symmetries, (4-50) and (4-64), associated with the con-
straints. In addition, the two critical amplitudes can be made pure imaginary
by a suitable displacement of the origin (symmetry (4-78)). This puts the
center eigenspace on the fixed point set of

Qgn @ —agg - (4-141)

Using symmetry considerations, one can show that the ¢ amplitudes do not
enter at second order. On the center manifold, the amplitude ¢, , 5 is given by
one component of the center manifold function of 2; and z,,

¢r1e=¢a(znze). (4-142)
The symmetry

¢ ma Cnin

(l,m.n - _q‘m,l.n

(4-143)

acts on the center eigenspace by
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(21.22) » (22,2)). (4-144)
Therefore, by the equivariance of g,
Eraa(zezr) = —¢112(21.20) (4-145)
Due to mode coupling, or equivalently the symmetry (4-78),
tg(zrze) =Cia(zize, 210203, 2,]zg]?, -0 ). (4-146)
Combining the two symmetries, one finds
Erae(z122) = 0(z122(] 2, %= 227)). (4-147)
The coefficient of z,25(|z,|?~]22|?) is nonzero, due to the following terms in
the ODE:
1,12 (Wa 1 gW 10,1 — W1 23Wo,-1,-1)- (4-148)
Note that wg 3= 0(2z%23), and w_; g1 = ~Z1+ ' " .
By the same argument as that leading to (4-147),
(1,1,0=0(2122([21|2—|22|2))- (4-149)
A similar argument, using the symmetry (4-98), shows that
$1-12and &y 10 = 0(21Z2(] 2,2~ 22]?)). (4-150)
The amplitudes ¢399 and ¢go2 are also of fourth order in the critical
amplitudes. By mode coupling, the ¢3¢ component of the g function is
¢ro0=C200(z 1% 282113 2% 25|50 ), (4-151)
and the equation for {3z has a similar structure. However, the lowest order
nonzero term in the center manifold function is {¢pgg ¢ 2,%|232|% Thus this
mode does not contribute to the cubic coefficient of the normal form. The
proof is as follows: The terms which are present when zp =0 ({200 % 2,%(] 2,|?)")
can be calculated when the fluid flow is two-dimensional, and 2z; is the only
nonzero critical amplitude. In the two-dimensional problem all the k vectors

are of the form lk,, and the ODE has the symmetry
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Win 2Wp

$in 2> —Cin
1’1."-”191."

sl,n "&.n

(4-152)

corresponding to the reflection which leaves k; and Z invariant. By the
equivariance of g under this symmetry,
&inl(z1) = ¢ n(z1). (4-153)
Therefore, in the two-dimensional problem the vertical vorticity is identically
zero on the center manifold.
Eliminating the vertical vorticity modes from the list of candidates (4-121)
and (4-122), the remaining second order modes are
€112, C1-120 Yooz, andfgoz. (4-154)
At this point the nonlinear couplings have to be calculated by hand from
equations (4-23) and (4-29). The modal equations for doubly diffusive convec-

tion, including O(¢) and 0(e?) modes, are

W01 =—3wy 01t E[RrY, 0.+ Rsé101]

—i(1-p)(1+p) (W), 2 Wo, -1 -1+ Wy -1 2Wo,1,-1) (4-155)
: 1 3
1017 o W0a" 5~ %0a
T . (4-156)
_5"'[(1_50)7“0,—1,—1191,1.24‘(1+§0)'wo,1,—1’191.—1.2]‘W’l,o.-l’ao.o.z
: 1 3
100 = 5 Wioa~ 5101
S , (4-157)
—E'L[(1"40)"“0.—1.—151.1.2"'(1+§0)w0,1.-151.—1,2]"Lwl.c,~1€c,o.2
. 1 31 (1—
Wye=—(5+p)wy et (_5;?)-[1%191.1.2*’1?361,1.2]‘ ‘g%g:g;—wx,o.lwo.l.l (4-158)
: 1+ 1 ]
Tr12= —UTE)—’wm,z—3(5*'50)191,1,2—;2‘4(1—90)(“11.0,1190,1,1+’wo,1.1191,o,1) (4-159)

: 1+ 1 .
§112= ;;&LW 1.1.2-Z(5+¢)51.1.2—%‘1(1"¢)(’w 101011t Wo11€1,0,1) (4-160)
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: —4 .

Bo0.2= ?"30.0.2_7’(1‘”1,0,173-1.0.1+w—1,0,1’01,0,1+'w0.l.1"30.—1.1+w0.~—1,1'00,1,1) (4-161)

. _ -4 .

£002~ “5—50.0,2"1(1”1,0,1€—1,o.1+w—1.0.151.0.1+'wo,1.1fo,—1.1"‘wo.—l.lfo,l.l) (4-162)
S

The ODEs for wg ;. 1'90_1,1, and éO,l.l can be obtained using the symmetry
Cimn>Cmin- (4-1863)
The ODEs for w,; _;5 ¥; -1 and ¢, _,, can be obtained using the pseudo-
symmetry

Ymn 2, —mn
> —p] (4-164)
[y->-¢]

For convenience, the f equations have been included, although they could
have been inferred from 9, using the pseudo-symmetry

Vimn < &mmn
[Rr o Rs] (4-165)

[o; < o5].

4.4. The pitchfork bifurcation in doubly diffusive convection

The first step in the calculation of the normal form is a linear change of
variables. The new coordinates, z, and z,, are the complex amplitudes of the

critical rolls with wavevectors k; and k,, respectively.

For doubly diffusive convection the linear problem is

él.m,n =LlimnCmn (4-166)

where ¢;,,, is a 3 element column vector and L;,,, is a 3x3 matrix, for
L, m, and n fixed.
Both the left and right critical eigenvectors of the matrix L, ¢ ;,
X§ and X§ (4-187)
respectively, are needed. The right critical eigenvector of the matrix L, g,

determines the critical eigenspace E;.
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The eigenvectors satisfy the conditions
X4Lyg1=0and L, o, X=0, (4-1868)

where X} is a 3 element row vector, X§ is a 3 element column vector, and

3 2 2
z afr gfs
Lig:= L 3 o | (4-189)
‘ 2oy oy
1 _3_
Rog 2og
\ J
The critical eigenvectors are
3
X=(2. ERro; . £Rs0,), and X§= 1. (4-170)
1

In this entire calculation it is implicitly assumed that the pitchfork condition
holds:

Rs+Rp=2r (4-171)
(see section 1.7.2). Usually, Rs is thought of as a fixed parameter, while Ry is
the control parameter. In order to exhibit the pseudo-symmetry between
S and T, however, £y will not be eliminated in favor of Fg until the final results

have been obtained.

The critical eigenspace can now be given the coordinates (z;,zp)e C%

where
Wi01 3 Wg,1,1 3
'191_0_1 =2 1|, and 730'1'1 =23 11, (4‘172)
1001 1 £0.1.1 1

and the other amplitudes, such as w, o _,, are given by the constraints (4-50)
and (4-64).

Equation (4-172) is part of a linear change of coordinates,

Wy, 3 » =% 2
101}]=|1 » »|| »|=85| » (4-173)
1.0.1 1 » »)| » »

(and a similar equation for e,5,). The stars (») in the 3x3 matrix S represent
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unimportant elements. For instance, if the new coordinates replacing ¢, g, are

2
pl. (4-174)
q

then p and gq are at least order 0(3), and therefore they do not contribute to

the normal form at third order.

In the new coordinates, the ODE is

* =S_1L1,Q,IS * [+87! ng ' (4—'175)
* » N
where
Ny == (1+¢)(1-g)[w 12Wo,-1,-1+Wy 1 2Wo,1,-1], (4-176)

Ng=—2i[(1-p)wo 119112+ (1+@)wo, 181 -1 2]—tw 0 1Bg 02, (4-177)
and N; follows from the pseudo-symmetry relating T and S.

The reason the left eigenvector is needed is that it allows one to find the

important elements of §7!:

% %RTUT %RSUS
1
S l=——|» » » . (4-178)
L
XQX(’)- » » »

The transformation becomes singular when X}-X§=0. This is precisely at the
codimension-two bifurcation, when the Hc;pf and Pitchfork bifurcations
coalesce. To see this, note that the condition found in Chapter One {equation
(1-122), with @ =0) for the codimension-two bifurcation is

X§ X5 = %(%Z+RTOT+RSUS) = %[%7—(1'*'07')'*'1?5(05_‘7”] =0. (4-179)
The conduction solution loses stability via a pitchfork bifurcation only if
X}-XZ>0. If the inequality is reversed, the instability occurs via a Hopf bifurca-

tion.

By construction, S partially diagonalizes L, g ;.
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000
S!L,0,1S=1{0 = »f, (4-180)
0 » =
and the ODE for z,, evaluated at Fr+Fg = %7-. is
Ny
Z,= xox§x° 1]\\;£ +0<£5)—Exf( SN, +ERpop No+ERs0sN;) +0(e5).  (4-181)

Two tasks remain, one is to write N,,, Ny, and Ng in terms of 2, and 23, the

other is to calculate the linear terms when FHg+ Ry~ = 27
4.4.1. The linear ODEs near the bifurcation
Near the bifurcation, the linear ODE for 2z, is
z,=(coefl.)(Rp+Ry—20)z ,+ O((Rp+Rs-EL)22,). (4-182)

The above coeflicient is determined in this section.

The critical value of (Ks, Fr) is found by solving the characteristic equa-
tion,

Det(L,o,—Al)=0, (4-183)

and demanding that one of the eigenvalues is 0. In general, if A}, Ag, and Ag are

the three solution of the characteristic equation, then

Det (Ly,0.0=A1) = (M =N (Az=A)(As—2)

= N+ (A A A= (A A Aghg FAGA DA A ARG . (27184)
Assume that A, is the only eigenvalue near zero:
OR A | < Azl | Ag] (4-185)

(This assumption breaks down near the codimension-two bifurcation.) From

equation (1-114), the characteristic equation, when |k|%= rand n®=1,is
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0=-A-3 |14 Iy Ly
2 r UOs
(4-188)
Ry K
— g.. L..*.l_.}. .....1._._ _L .__7_'-+_S. A_._..].‘__ E.Z_L(RT.}.RS) .
4o, og o0705| 3|o; o0y or0s| 8 2
Temporarily define the coefficients in the above equation by
0=-A3+bA%—cA+d. - (4-187)
Comparing equations (4-184) and (4-187) gives
c = >\1A2+>\2>\3+>\8)\1 = )\2A3+ O(Al) (4.-‘188)
d = )\0\2)\3 ' (4'189)
so that
d d d
= = =—|1+ . 4-190
M= Rk T eF00) e [1+0()] ( )
Using the values of ¢ and d in equation {4-188), one finds
(RT+RS—-2-7—
A= 4 +O0(\ ). (4-191)
9({1 1 1 1| By KEs
20705 4[07+as o,os] 3|or os]

When evaluated at Rp+Rg = —2;—7-, the denominator in the above expression is equal

to X}-XJ. Therefore the coefficient in equation (4-182) has been found:

(Rr+Rs—2L
2'1 = ——Zx—és'(%-)——zl'i' e, (4-192)

4.4.2. The approximation of the center manifold

Equations (4-181) and (4-192) suggest a rescaling to eliminate the denomi-

nator:
t - (X§XD)¢t. (4-193)

The connection between the dimensional time and the newly scaled time is
2 27y T2V
t = S—(RTUT+RSUS+ 2—) '&-z_tdim . (4'194:)

The ODE for z; is now
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Ny
2, =(Rp+Rs— %)z \+Xb-| N |+ O[ (Rr+ Rs— )% | + O[ (Rp+ Rs—Z-)e3] + 0(2%). (4-195)
In order to continue, the nonlinear terms N,, Ny, and N; must be evaluated

on the center manifold, when Fy+Hg = 2{—. The second order modes are approxi-

mated by setting their time derivative to zero. This is justified as follows: on the
center manifold,
C112™~ 222, (4-198)
and the time derivative is
6,12~ (2 2p)~ 2 20+2 35~ O(Ae?)+0(e*). (4-197)
(Recall that the center manifold is evaluated at A=0.) A similar argument

applies to the ¢y, modes. Thus, equation (4-161) implies that
Os .
V02~ —Tsl(w1.0.11’—1.0,1+’w—1,o,1"31,0.1+'wo,1.1190,—1,1""‘“0,—1,1190,1,1)+0(84) . (4-198)

Using equation (4-172) and the constraints (4-50) and (4-54), one finds

w1'0'1=321+0(83)
W_y0,1= Wy, =—32,+0(c’) (4-199)
B_y101=-Z,+0(&%), etc.

Y902 can be evaluated on the center manifold. The result is
Yg02= 2i0,(4%)+0(e?), | (4-200)
where
A=z %+ 2,3, (4-201)
Using the [7 < S] pseudo-symmetry, the equation for £qgg 2 is
f002= 2ios(AP)+0(e?). (4-202)
The other second order amplitudes are more difficult to compute. The equa-

tions are



Wi,z LARE 3(5+¢) w0, Wo,1.1
Braz|{=Liiz[%112 “é—i(l—?) Wy 0a%011+Wo, 110101 = O(e%),
€112 £11.2 Wy g,1€0,1,1tWo.1.1€1,01
where
( 3
R Rs
—(5+¢) L
(5+p) (5+9p)
L= | ) _Gre)
Gr Gr
Uxe)  , _(Bte)
Os Os

On the center manifold, this becomes

Wi12 9(5+¢)!
Y1az|= Fi(1-¢)z 2oL, 27" 2 +0(g%),
f112 2

It is straightforward to invert the 3x3 matrix,

1 -1

Lij27'= M= M,
b1 osorDetLy o [(5""/’)3—2;7'(1*‘90)]
where
( )
(5+9p)? krog Ksog
Rs(1+¢) (1+9)
= |(1+p)(5+ CTIP LIS A Sl £ an e
M=(1+9)(5+9) 07| (5+9)* =~ %5 G5rp)
1+ Rp(l+g)
1+¢)(5+ Rpop $1%0) og|(B+g)i— o=
‘( #)(5+¢) T T(5+¢) s (5+¢) (G+g) J
Substituting L, , 2”! into equation (4-205) gives
W2 ) 9(5+¢)+2(Rro,+Rs0s)
5 ) o1 sgye2a (549t 2R (g —op) (L)
=z,2 Fo)+2 + - A
1.1.2 122 [(5+¢)3_%7_(1+¢)] p)t2a{o+y s\O0s—0p (5+¢)
1+yp)
JRE: 9(1+¢)+20’S(5+g{))2+EET(O'T—O'S)%g_:z—)—

222

(4-203)

(4-204)

(4-205)

(4-208)

(4-207)

. (4-208)

These second order modes can now be inserted into the nonlinear terms (4-178)

and (4-177):

Ny = =i(1+9)(1-g)w, , 2(322)+[¢ » —¢]

(4-209)
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Ny =—71(1-9)91,2(322)+[p » —¢]-i¥g0.2(-32)) (4-210)
Ne=(“%i(1“¢)€1,1,22_2)+[‘/’ - —p]+(3ifo0221) - (4-211)
The pseudo-symmetry (4-105) has been used so that the contributions of the
C3,-12Cp0,1,-1 terms don't have to be calculated. They are found by replacing ¢
with —¢ in the ¢;;,¢p-, -, terms. (Since ¢ does not appear in the ODEs, the
[% - —¢] is dropped from equation (4-105).)
Combining (4-195), (4-208), and the nonlinear terms listed above, the nor-
mal form can be written
#1=2,[ (Rr+Rs—20)+[a(p)+8(—p)]| 22| 2+b4%], (4-212)
where the @(p) terms come from e, ; z¢q_;

G(p)z,1 12212 = L[ =31 (1+0)(1-p)w 1 222 ]+ R, [~ 2i(1-p)81 1 22 ]

+g‘RSO's[—g-i(l—f/’)fl,l,zfz]]- (4-215)
and the term proportional to b comes from ¢ggzc; 9,-1i
bz, A% = [g—-o+ 2 Rpo (30022 1)+ LRs05(Bi ko2 ,)]. (4-214)
When the ¢, ,, modes are inserted into (4-213), a little algebra yields
a(p) = —af(qp)[e—j—(1+¢><5+¢)+9<1+¢><Rror+ﬁsas>
4-215
+(5+9)*(Rro 2+ Rsog?) %r-@ RrRs| a,—aslz}, ( )
where
—g)2
f )= [(5+¢§§_€2(1+¢)]. (4-216)
When the ¢g oz modes are inserted into (4-214), one finds
b = —3(Rro,2+Rsog?). (4-217)
The equations can be rescaled to simplify the coefficients; let
Rr = —7""1- Rs= “Ts- (21)o1g = '("z“l)—mw ., and (4-218)

V3
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g—t—ozd = g‘}gf—naw. (4-219)
The rescaled normal form is
2,=(r,+rg—1)z ,+awgz,| za|%+bz (|2, 1%+ |23]?), (4-220)
where
a.=[a(p)+a(-p)]. (4-221)
with
a@(p)==f () 3(1+p)(5+¢)+9(1+p)(r, o, +T505)
4-222
+(5+§0)2("'7012+Tsasz)“%‘%:-_J;_)L"T"'s|UT_US|2 . ( !
b = —(r o2 +7r505%), (4-223)

where f{g) is defined in equation (4-216). The dimensionless time used in this

scaling of the normal form is

9 29 7T2U
and the amplitude is
V3 7
215 AT 81,0, dim - (4-225)

The above equations are perhaps the simplest expression of the result, but
there is some redundancy because rg+7, =1 at the pitchfork bifurcation. The
thermal Rayleigh number can be eliminated using r, =(1-rg). This corresponds

to an experiment where Fs is fixed, and Fy is the control parameter:

a(p)= =7 (p)[3(1+9)(5+¢)+9(1+¢)| ar+rg(os—ay)]

(4-2286)
+(5+¢)2[0T2+7-S(032._0T2)]_gf_ %é_:_g)l(rs_rsz) lo,—0g|?
b =-[or2+r5(05%—0,)]. (4-227)

In the literature a different scaling and different parameters are usually

used. (See the discussion in chapter 1.) The traditional notation hides the sym-
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metry between heat and solute, but the symmetry is destroyed anyway when 7,

is eliminated. The amplitude is rescaled by

(z l)new = UT(Z l)aldl (4"228)
and the new parameters are
~ _ 07 _
Ts=-TsT, 7= —=, and 0=0y, (4-229)
s

In terms of these new variables,

2(p) = —f (¥) ;9;-(1+¢)(5+¢)+ g—(lw) 1+?s(%—:—g)

~ ~ /4-230)
2 (1_1)[, 27 (re) |Fs (TNl qo1)2 ‘
(5+¢)? 1+7~S(; ;3—> += (5+0) TS+( Ts) | 1 ;I :
b =—[1+?‘s<-i——;‘§-)], (4-231)

where f(p) is defined in equation (4-218). The value of 75 where the pitchfork
bifurcation of the rolls is degenerate is
-3

(Ts)o=0= T (4-232)

Note that this does not depend on g.
This concludes the calculation of the coefficients in the normal form for

doubly diffusive convection.

4.4.3. Analysis of the results

Now the results of the calculation must be analyzed to see what convection
patterns they predict. The analysis is done with the parameters 75, 7, and ¢ to
simplify comparison with other work. The parameters can be restricted to the
region

2
oo < T T _(140) _ o~
OO<TS< (1—1_) " —(Ts)uz=0

O0<t=s1l (4-233)
>0,

without essential loss of generality. The upper limit of ?S is at the
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codimension-two bifurcation where the Hopf and pitchfork bifurcations

coalesce. For 7g > (7) the Hopf bifurcation occurs before the pitchfork, as

wi=z0
Tris increased. Note that () 2_,>(Fs)y =¢ for all ¢ and 7. The case where 7>1

can be transformed to the above region by interchanging S and 7, which

changes the new parameters as follows:

Tg > =TT =—(1-1g)T=-T-Tg (4-234)
g
zZ 4-235
g = ( )
1
1 4-23
T ( 8)

Theorem: There are no stable, small amplitude, three-dimensional, stalion-
ary solutions of the equations for doubly diffusive convection in the Boussinesq
approrimation (equations (1-48)ff). Rolls are the only possible stable, small

amplitude, stationary solution.

Proof: According to the results of Chapter Two, the hexagons, rectan-
gles, or squares can only be stable when

@ = [c’i(;a)ﬂ'i(—ga)] > 0, and (4-237)
b= <0, (4-238)

for the value of ¢ corresponding to the hexagonal, rhombic, or square
lattice. (This is necessary but not sufficient for there to be stable
three-dimensional patterns; the coeflicients must be in region Il of fig.
2-7, 2-23 or 2-32) However, the above combination is impossible. The
expression (4-230) for o can be written

1+Ts(gr._%3)

where neg.” represents neFatilve semidefinite terms. Note that

11
- 135;—-;2—50. (4-240)

+neg., (4-239)

G(p) =neg.+neg.|[1+Fg ( ?1;‘;13“) +neg.

Since both of these combinations are negative, a (¢) is always negative
when 7y is negative. Furthermore, when 7 is positive,

b =[1+$S(1;—:15) <l1+7s(L-1)]. (4-241)

Therefore, when b is negative, every term in @(p) is less than or equal
to zero. QED
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Fig. 4-2. The T4-1 parameter space of doubly diffusive convection, where ¢ is
fixed.. (The qualitative results are independent of o.) The rolls are subcritical
in the region where b >0, and therefore there are no stable small amplitude
solutions. The rolis are supercritical when b <0, and the rolls are the only
stable solution in this region since a <0 for all lattices when & <0. In the shad-
ed region, the Hopf bifurcation occurs before the pitchfork. The dividing lines

in this figure are (7g), =¢ and (¥g) z_,-

Fig. 4-3 shows the lattice function (equation (4-221), combined with (4-

230)) for the parameters ¢ and T of salt water.
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Fig. 4-3. The lattice function, (4-221) and (4-230), for thermohaline convection
(doubly diffusive convection in salt water). Fig. 4-3(a) shows the lattice func-
tion in the salt-finger regime, where 75 is negative: rolls are the only stable
solution here since a <0 for all lattices. Fig. 4-3(b) and Fig. 4-3(c) are in the
range (T5)y =0 <75 <(Fs) 2., (These endpoints are defined in equations (4-232)
and (4-233).) Note that b = a_z_,>0in figs. (b) and (c), so that rolls are subcrit-
ical and there are no stable, small amplitude solutions. In fig. (b), the dotted
line is at @ =0, the dashed line is at a +2b =0 (where the rectangles bifurcate
vertically), and the triangle is at Ray+3b =0 (where the hexagons and regular
triangles bifurcate vertically). In fig. (c), the arrow indicates that Ray>0, b >0,
so that region IV of figs. 2-23 and 2-24 are relevant to Boussinesq convection on
a hexagonal lattice with these parameters.
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Nagata and Thomas (1983) have calculated what is usually called R, in the
literature, (see equation (2-461)) although they cannot determine the stability
of the rolls to. three-dimensional disturbances. However, the preprint results of
Nagata and Thomas do not agree with Schliiter, Lortz, and Busse (1965) in the

limiting case of purely thermal convection.

The limiting case of Rayleigh-Bénard convection can be reached in two

ways: either by setting ?s =0, or by setting 7T=1. The nonlinear terms are
~ 3 9
@(p)=~s (¥) ;2—(1+;a)(5+¢)+ S (1+e)+(5+¢)* (4-242)

b=-1 (4-243)
Therefore the rolls are always supercritical (b <0), and they are the only small
amplitude stable solution {(a <0).

This final form agrees with the appendix of Schliter, Lortz, and Busse
(1965), where the calculation was first done. The correspondence with their
notation is:

a{p)=cl{p,—¢), b=cL(-1,1), (4-244)
where ¢ is a constant.

There is some experimental indication that squares are preferred in the
salt finger regime, where 75<<0 (Shirtcliffe & Turner 1970). It is well known,
however, that nonlinear effect are important for salt fingers. The small ampli-

tude analysis used here cannot be expected to work.
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Chapter Five

The Hopf bifurcation in doubly diffusive convection

In this section the bifurcation of the standing and traveling waves is com-
puted for doubly diffusive convection. A major result is that the bifurcation of
the traveling waves is degenerate: The cubic damping coeflicient is identically
zero for all parameter values. This fact was known to Bretherton and Spiegel
(1983), although they did not emphasize it. The focus of their paper is how the
slowly varying amplitudes (varying on a slow spatial scale as in Newell and

Whitehead (1969)) can check the growth of the waves.

The traveling waves have generally been ignored in the literature. Analyti-
cal studies as well as numerical integrations of the partial differential equations
usually impose “no flux” boundary conditions at the side walls which forbid the
traveling waves. With periodic boundary conditions the traveling waves are
allowed. The results of section 2.8.1, where the degenerate bifurcation with
‘b =0 is studied, apply to this problem. In particular, when the standing waves
are supercritical, one of the diagrams in fig. 2-13 (with & =0) is appropriate.
The traveling waves are the preferred mode of oscillatory convection when the
standing waves are supercritical. (Near the bifurcation, the traveling waves ére

sure to have a larger amplitude than the standing waves.)

In this chapter the cubic damping coeflicient of the standing waves is cal-
culated. This is not a new result but the techniques are new. The complex
notation used here particularly appropriate for Hopf bifurcations. For simpli-

city, the calculations are restricted to two-dimensional convection.

5.1. The Third Order Calculation

The ODEs needed are an extension of the Lorenz (1963) equations, where
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the solute modes are included and the amplitudes are complex.

For two-dimensional convection the notation for the amplitudes is
cl.nEclkl,n ' |kl]2=kcz' (5'1)
It follows from equations (4-155)-(4-162), neglecting the ¢, ,, , modes with m #0,

that the ODEs are

Wy = —3w,  +E[RrY  + Rséi] (5-2)
L 2(177 Wy, — 231 By,1—twy, 10,2 (5-3)
£11= 2(175 Wiy,— 235 £1.1—1w) 1602 (5-4)
750.2 = ;_T“i(wl,119~1,1+w—1,1191.1) (5-5)
£02= %‘i(wl,lf—l.ﬁw—l,lfl.l)- (5-6)

These equations can be scaled to eliminate the numerical coefficients. Let

:—te%%,so thatw%%w. (5-7)
Ry - gf—r,, and Rg - %7—7'5, (5-8)
Wy g > 2w, g (5-9)

Yn > 2B n.and &0 2 2ibin . (5-10)

In terms of the new variables, on the right hand side, the ODEs are

Wy = w4170 g (5-11)

: 1
Y= E’T_(wl,l"ﬁl,l)‘*‘wl,—ﬂgo,z (5-12)

. -18
Yoz = ?T“gﬁo.z‘*'('w1,1’19—1_14"’”—1.1"‘31.1)- (5-13)

and the equations for él.l and éO.g. which follow from the pseudo-symmetry
CBnbin [US‘—’UT,TSHTT]. (5-14)

For a general wavenumber, the factor of g- in the 1'90,2 equation is replaced by
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[V y— (5-15)

Note that 0 < v < 4. Of course, u=% is the most interesting case, since it

corresponds to the first wavelength to go unstable. The result that the travel-

ing waves aren't damped to third order is independent of the wavelength.

The system of five complex equations ({(5-11)ff) is the complexification of
the five dimensional real system which was first derived by Veronis (1965). The
real system was studied extensively by Da Costa et al. (1981), where many
interesting bifurcations were found. The five dimensional real system describes
doubly diffusive convection in a box, where traveling waves are not allowed. The
behavior of the complex system is certainly more complicated, and should be
studied numerically. However, the five dimensional complex system is degen-
erate and more modes must be included to properly study the traveling waves.

WARNING: The change of variables of equations (5-9) and (5-10) involved
multiplication by i. This changes the symmetries of the ODEs which involve
complex conjugation. In terms of the new variables, the symmetries which

preserve the boundary condition give the constraints:

Cin=—C_p==C n=Cyp (5-18)
The other symmetries are
Cin2Cn=—Cyp (5-17)
> (-1)"c, 5 (5-18)
st (5-19)

The vertical vorticity modes have not been included here, since the symmetry
(4-152),

Cin > Cin

bim > —Cims (5-20)

forces the vertical vorticity to be identically zero on the center manifold.
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5.1.1. Linear theory
The linear problem of the first order modes involves finding the eigenvec-

tors of the matrix

{ \
-1 r, Ts
1 -1
=|-— — 0 ]. 5-
L=\ o (5-21)
_1... 0 :_1
L Os Os }

At the Hopf bifurcation, the eigenvalues of L, | are

iw, —iw, and —(1+-—l—+L>. (5-22)
s Or

The third eigenvalue is the trace of L;;, since the sum of the other two eigen-

values is zero. The right eigenvectors for these eigenvalues are:

{ 3 ( 4
1 1
|1 R D S S .
X | ooy | X-e™ | Toiaary |~ Kier and (5-23)
S S S
(1+’i&>05)‘ (1—'1,5)05.)J
or0s{1+0,)(1+0g)
—os*(1+0,) . (5-24)

X =
(e 14+ L
(1+‘7T+05 ) —0,%(1+0g)

The linear change of variables which diagonalizes L, , is therefore

Wi z
8y, | = S|wl, (5-25)
£11 q

where 2z is the complex amplitude of the left-going traveling wave, w is the
amplitude of the right-going traveling wave, and g is the amplitude of the third
order mode associated with the real eigenvalue. The columns of S are the

eigenvectors listed above:
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1 1 o,05(1+0,)(1+0g)
_ 1 1 .2 -
S= (1+iwg,;) (l-iwo,) o5°(1+0y) : (5-26)
1 1 e
| (1+iwog) (1-iwog) o5 (1+0s)

The matrix S diagonalizes the linear ODE:

2 z 0
w|=8"'L, ,S|w|+S! wi _1Y,2|, (5-27)
q 9 wy,-1€0,2
where
iw O 0
S'L;;S=]0 —-iw 0 . (5-28)
0 o —(1+4+1)
Or 0Os7|

The inverse of S can be calculated from the usual method of determinants
and cofactors. Note that this is a different approach than was used for the
pitchfork bifurcation. There, the left eigenvectors were computed in lieu of the
full matrix S. The left eigenvectors of L;, involve 7, and rg, but in the Hopf
bifurcation it is more convenient to eliminate these parameters in favor of w?
using equation (1-122). After this substitution the left eigenvectors are messy,

and the dot product of the left and right eigenvectors for the same eigenvalue

is neither purely real nor purely imaginary.

The method used here is convenient since all three eigenvalues are known.
In addition, S has some nice properties; for instance its determinant is pure
imaginary:

wPosRo P +{og0p+0g+a,)?
(1+G)20'52)(1+(020'7'2)

DetS=iw(og—0;) (5-29)

The first three factors are necessary since i » —i or w » —w interchange the first

two columns of S, and o4« g, interchanges the second and third rows, thus
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changing the sign of the determinant. The other factors are positive definite,

and invariant under [ S «» T].

It is easy to see that z is the amplitude of the traveling wave going in the
direction opposite k,;: This will be called the left-going wave. The ODE for z is
z =iwz +0(2%), sothat z2(t)=¢eet +0(ed), (5-30)

where ¢ is the amplitude, assumed small, which is undetermined by the linear

ODE. When ¢ is real, the vertical velocity field is
w(x, t) < gsin(Z-x)cos(k;-x+wt)+0(e?), (5-31)

which is indeed a traveling wave.
It is necessary to find how the amplitudes {(z,w, and q) transform under

the symmetries. The symmetry between right- and left-going waves is
(5-32)

Cn?Cyn= El,n .

This transformation is the same as
(5-33)

since X;, =X_;,, which implies

wy, w
51_1 =5 z]. (5-34—)
£ 7

The translational symmetry (5-19) gives
z 2
w|-»e¥|w|, where s=k;-d. (5-35)
q q
In addition, the critical modes have a time franslation symmetry, which

corresponds to the freedom of assigning £ =0. This has no effect in stationary

bifurcations, but here it yields the symmetry
(5-38)

-
woe Py,

These two symmetries can be combined to give two space-time translational

symmetries which follow the left- and right-going traveling waves, respectively:
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z-z, w-oe*w, and (5-37)

zZ ey wow. (5-38)

The time translation symmetry is different than the others, since it is not a
transformation of all the amplitudes, just the critical ones. The higher order
amplitudes are damped in the linear ODEs, and the critical amplitudes are
damped at higher order. The details of this rather subtle symmetry are given in

Golubitsky and Stewart (1984).

5.1.2. The center manifold

The only second order modes are ¥ and £y5,. These modes are invariant
under spatial translations (5-19), and the left-right symmetry (5-33). This
forces the center manifold function to be of the form

Woolz w) = arz@+xrZw +LB7(A%)+ 0(A*)

too(zw) = aseW+aszw +Bs(A%)+ 0(4%), (5-39)

where fr and 85 are real, and A%=|z|?+|w|? Due to the [S <> T] pseudo-
symmetry, the coefficients satisfy

ar =arloros]
os = arlog.07],
and (5-40)
Br=Brlor.05]
Bs=Brlos.0or].

Equation (5-39) can be differentiated with respect to time,
Boz = Riway2® —2iwl pZw + 0(4*%). (5-41)
Then this equation can be inserted into the ODE for ¥y, to solve for « and 8:

Soe = 5’1"3—60'2"'(’”1.1"9—1.1*'7-“—1.1191,1)
{ (5-42)
= gf—}-g—((XTZ'l_ﬁ+anw +ﬂT(A2)]+(’w1'l’l_91.1+'w1‘1731‘1)+ 0(A4)_

The nonlinear terms can be written in terms of z and w:
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_ _ z w
+ - +c.c.
Wy By + W08, = (2 +w) (1_iwgr)+<1+iwgf)] €e
, (5-43)
2 22W
= ————(4%)+ ——— t+C.C.
(1‘*“&)20’72)( ) (1+'LQO'T) ]

where the ‘“c.c.” stands for the complex conjugate of the proceeding term.
When the two equations for 1'90'2 are set equal to each other, the coeflicients of

2% and |z |? match independently:

. -1 8 2
2 = — & +—_—, 5-44
toar oy §ar (1+iwo,) ( )
-1 8 2
0= —=f(p4 ————, 5-45
a7 3 Br (1+cwko,?) ( )

These are solved to give

gr
o = , 5-46
"7 (t+ive)(1+iwo,) (5-46)
3 oy
T e e e 5'4.'7
ﬂT 4 (1+C<)20']'2) ( )

The second order modes can now be inserted into the equation for z and w:
2 =iwz+57 g w) 1Woe+S 3wy —1foe (5-48)
W =iwz+87 g w BoetS ez wy 1foe- (5-49)
It can be verified that S7! has the symmetry properties,

57 e=87 2l07.05] (5-50)
Sﬁlila = S*li_z[Us,O'T] , and

S—ILJ' =§~12.j . (5"51)

This last property insures that the normal form is equivariant under the sym-

metry (z <> w). The ODE for z is
s =iz +[S—1,_2[—(z +w) [ arz@+apzw + (| 2 |2+ w |2) |+[S T]]. (5-52)

As discussed in Chapter Two, the beauty of the complex notation is that all
the cubic terms which are not in the normal from can be eliminated with a near
identity change of coordinates. Because of the symmetry, there are no qua-

dratic terms; therefore the normal form is
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2 =iwz+az |w|?+bz(4%)+0(zA4%) (5-53)
w=—-iww+aw |w|R+bw(42%)+0(wA?), (5-54)
where
a=Gr+ds, b=br+bs, (5-55)
and in turn,
G7=—5"' 207, and by =-S5 ,87. (5-56)

All that remains is to substitute the value of §71; 5

__1 |oros{lto,)(1+os)(1+iway)
DetS (1+0?05?)

S, +o.2(1+0g)]. (5-57)

The normal form (5-53) and (5-54) was discussed in Chapter Three. The
results are simply stated: Only the real parts of a and b are important for the

qualitative behavior of the bifurcation diagrams. The real part of %a +b deter-
mines whether the standing waves are subcritical (Re(-é-a +b) > 0), or supercrit-
ical (Re(—;—a +b)<0) ; the real part of b determines whether the traveling waves

are subcritical (Re(d) >0), or supercritical (Re(b)<0). If both standing waves
and traveling waves are supercritical, the one with the larger amplitude 4% is

stable.

5.1.3. Traveling waves

It turns out that the real part of b is zero. Since 87 is real, only the real
part of 87!, , contributes to Re(b) (see equation (5-56)). Also, in determining
the sign of b, one can neglect all positive factors which are symmetric under
the interchange of temperature and solute variations. Referring to equation

(5-29) for the determinant, which is pure imaginary,

_ 1 twos o 1 1WO0g  _ Ts
DetS (1+wf0g4?)  iw(os—0;) (1+wf0s?) (og—0,)(1+wiag?)

Re(S7!,,) . (5-58)

In the above equation and elsewhere, the < symbol means that the constant of

proportionality is positive and symmetric under [T «» S]. Using equation (5-47)
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for 8.
~ ar0
Re(b p) LS . 5-59
(&) (og—o,)(1+wP0,)(1+wRag) ( )
which is antisymmetric under [T «» S]. Therefore
Re(b)=Re(br+b5)=0. (5-60)

In other words, the damping coeflficient of the standing waves vanishes to third

order. When the wavelength of k, is varied, the % in equation (5-4R) is replaced
by v, which changes 8y and B85 by a factor of v/ -g-. The real part of 6 is there-
fore zero for all wavelengths.

The result that Re{(b) =0 is not forced by the [ 7 «» 5] symmetry; therefore
one would expect that any perturbation of the system will break the degen-
eracy. For instance, doubly diffusive convection with rigid boundary conditions
would most likely not have Re(b)=0, even if the symmetry between heat and

solute were perfectly preserved.

The degeneracy in the third order system seems to be truly accidental.
The view is perhaps naive; it is dogma that all degeneracies of this type, which
hold for a wide range of parameter values, are caused by some symmetry of the
system. However, if the degeneracy were caused in some simple way by a sym-
metry, they the real part of all the coeflicients in the ODE would be zero. This
is physically impossible, because it would imply that the amplitude of the travel-

ing wave grows without bound when the critical Rayleigh number is exceeded.

There may be some more subtle symmetry which causes the cubic degen-
eracy, similar to the symmetry which forces the vertical vorticity modes to van-~
ish at second order (but not higher order) on the center manifold in three-
dimensional Bénard convection. For instance, the fact that the ¢;; modes are

invariant under the right-left symmetry, z «» @, may be important.
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5.1.4. Standing waves

The coeflicient which determines the criticality of the standing waves is

Re(é—a-&-b):é—Re(a), (5-81)
where
2 =-S5 ,ar+[T > S]. (5-62)
The result is that Re(a ) has the same sign as

9 og o, w)*
~(05 07 )B[37 (05 + 07) +49 0507+ 12 (052 + 0,2+ 0520, + 05 0,2)] (5-63)

~16 (og+op+050.) [0s2+ 0,2+ o 0,(1+ a5+ 0,)].
For fixed o5 and ¢, this is a quadratic in ?, of the form
(pos Jw*+(neg )P +(neg .). (5-64)
where the coeflficients are positive or negative as indicated. When w =0, at the
codimension two bifurcation, the real part of a is negative for all Prandtl
numbers. Therefore the standing waves are always supercritical when o? is

sufficiently small, and subcritical at large enough w?.

Before plotting the results, it is best to convert to the standard parameters

used in the literature,

Oy ~ W
, T= ——, deow=—. 5-65
Opr, T P and & o, ( )

The frequency is rescaled since the thermal time scale is used. In terms of
these parameters, Re(b) has the same sign as

90 ,0*
~[(120,+87)72+(120,2+490,+37) 7+ 120 (o ,+1) | &? (5-66)
—167(T+0,+1)(T*+o,T+THO,+ 1)

This result agrees with Da Costa et al. (1981).

The derivative of the above expression for Re(b) with respect to 7 is nega-
tive definite (for 7>0), since the coefficient of @* does not involve 7 and the
other coefficients are negative. Therefore, when the zero set is mapped for

fixed o4, ©? is monotonically increasing with 7.
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The zero set of Re(a) is drawn for various fixed values of g, in fig. 5-1.

Note that the value of @® where Re(a) is zero stays finite and non-zero in

the limit that 7+ 0 or 7+ 1. The lower limit gives a particularly simple result:

.~ 4
lim @? =—(1+0,). 5-87
_HQW Re(a)=0 3( ) ( )

There is no Hopf bifurcation when 7=1, so it is at first surprising that this
limit is also well behaved. The value of ©3® determines the Rayleigh numbers at
which the Hopf bifurcation occurs (see equation (1-122)). In terms of the stan-

dard notation, these equations are

_ {og+7) (1+37)

Ty o (1=D) (5-68)

The singularity at 7=1 is apparent in these formulas.

111r[||1[!|{|

Fig. 5-2. 75 vs. T (equation (5-69), with ¢, =1), for various values of w? The
codimension two bifurcation is at ©°=0. This figure is simply expanded in the
horizontal direction when o, is different than one.
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Fig 5-1. The sign of Re(a) is plotted as a function of &® and 7 for fixed thermal
Prandt! number. The curve is qualitatively the same for all Prandtl numbers.
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Conclusion

This dissertation has used the modern theory of dynamical systems to
investigate pattern selection in thermal convection. The method used here
unifies the perturbation expansion technique of Malkus & Veronis (1958) with
the abstract approach of Sattinger (1979), which is based solely on symmetry
considerations. The symmetry of the critical modes is used to find the normal
forms, which contain undetermined coeflicients, for many convection examples.
The coefficients are then calculated for doubly diffusive convection using the
center manifold approach (Marsden & McCracken 1976, Guckenheimer & Knob-
loch 1983). The’_symmetries and psuedosymmetries of the problem are fully

exploited in the center manifold reduction.

The bifurcation with the symmetry of the square (D, symmetry) is a unify-
ing element in this work. It contains the essential symmetry of steady convec-

tion on a square or rhombic lattice, and oscillatory two~-dimensional convection.

The steady state bifurcations on the hexagonal lattice are much more com-
plicated that those on a square or rhombic lattice. The analysis of the ordinary
differential equations (ODEs) describing this case is included here in detail for
the first time. This analysis is made possible by considering the restriction of
the ODEs to two invariant subspaces: the equal amplitude subspace and the real
subspace. When symmetries are present, higher dimensional systems can often

be analyzed using this technique.

Chapter Four provides a complete analysis of three-dimensional stationary
bifurcations in doubly diffusive convection with periodic boundary conditions.
(The Boussines] approximation is assumed in these calculations.) The only
stable, stationary, small amplitude solutions are the rolls. Two-dimensional

oscillatory convection is treated in Chapter Five. When periodic boundary con-
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ditions are assumed, it is found that traveling waves are the only small ampli-
tude, stable, two-dimensional solution. In much of the parameter regime there

are no stable small amplitude solutions due to subcritical instabilities.

There are two general directions in which this work can be extended: the
first is the mathematical analysis of more complicated bifurcations, and the

second is the calculation of the normal form coeflicients in more examples.

®* The complete analysis of three-dimensional oscillatory convection should
be possible with more work. In addition, the normal forms for higher-
dimensional critical eigenspaces, such as the 8-dimensional representation of

fig. mmm, could also be analyzed.

® The calculation of the coefficients in the normal form for rotating convee-
tion is completed (in preliminary form). Magnetoconvection has rich sym-
metries and pseudo-symmetries, and this example should prove to be very
interesting. The combination of effects, such as doubly diffusive convection in a
rotating layer, provides many examples where the techniques of Chapter Four

are applicable.
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Appendix A
Notation

(Tildes indicate standard notation)

Rayleigh number

_ agATd® 1 ~
R=fp= 8 = ik
_fr
Tr= (e

Solute Rayleigh number

Non-dimensional rotation vector

Taylor number (for vertical rotation vector only)

1 ~d
T=|Q|%= FT

Prandtl number
=V r-
o e [ 0'7']

Solute Prandtl number (Schmidt number)



Viscous time scale

Thermal time scale

Wavevector

Exponential

Temperature variation

Solute variation

Velocity field

Vertical velocity mode

v
t =tyim VEa
2
K
t=tyim Tiz
k=X
w
exn = g t(kx+nz)

9= f: Zk:('ak.nek.n)

n=-—oo

£= i": E(fknekn)

n=—oa

u= Y, zk:[’wxnwkn*'fknzkn]

n=—o0

Win = (_kn+ |k|2§)ekn

247
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Appendix B

Convection in a Rotating Fluid Layer

This appendix is a reprint of the paper, ''Convection in a rotating fluid
layer” (Swift 1984), which originally appeared in the conference proceedings:
“Geometry and Dynamics: Fluids and Plasmas", Jerry Marsden, ed. (1984). This
paper describes the effect of non-Boussinesq terms added to a model, due to
Busse and Clever (1979), of convection in a rotating fluid layer. The Busse-
Clever model is a degenerate dynamical system; the degeneracy is removed

when the non-Boussinesqg terms are added.

This paper is a natural extension of the work in Chapter Two on the nonro-
tating problem, and the previous appendix on the Boussinesq rotating problem.
In Chapter Two, the analysis of ODE was done in two steps; the phase space

{{2,, z2, zg) e €3] was restricted to two invariant subspaces:
(i) The real solutions, where z,, 25, and 25 are real, and
(i) The equal amplitude solutions, where z,=2,=23=2 € C.

The analysis of these two subspaces allows an understanding of the full six

dimensional phase space.

In this appendix the analysis of the real solutions (i) is done in the rotat-
ing case. The analysis of the equal amplitude solutions {(ii), which finds the
bifurcations of hexagon and triangle solutions, is the same in the rotating and

nonrotating cases. The proof follows:

When restricted to the equal amplitude solutions, the symmetries of the

dynamical system are generated by:

in the non-Boussinesq case, and the additional transformation
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z->—-2
in the Boussinesq case. These symmetries are the same in the rotating and
nonrotating cases; therefore the results of Chapter Two of this dissertation

carry over to the rotating case.

(Recall that the symmetry of the nonrotating case which is not present in
the rotating case is
(21, 22, 25) 2 (21, 239, 22).
This has no effect on the equal amplitude solutions {ii).)
Ken Rimey used the Macsyma computer algebra program to help with some
of the calculations. He has written a paper (Rimey, 1984) on the computer

aided calculation of the general solutions (see Swift 1984, p. 444).
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CONVECTION IN A ROTATING FLUID LAYER
James W. Swift1

ABSTRACT. A model for convection in a rotating fluid layer, due to
Busse and Clever [1], is modified to include non-Boussinesq effects.
The three dimensional ODE of the new model has saddle-node,
pitchfork, Hopf, and global bifurcations.

1. INTRODUCTION. Thermal convection in a fluid layer heated uniformly from
below and rotating about a vertical axis can undergo an unusual instability.
Kuppers and Lortz [2] have shown that, if the rotation rate exceeds a
critical value, any convection roll is unstable to 2 new roll oriented
preferentially at 58° to the original roll, as measured in the direction of
rotation. The subsequent time evolution is somewhat puzzling since there are
no stable, steady solutions of small amplitude. Kuppers and Lortz argued
that the flow would become turbulent. They did not consider the possibility
of limit cycle behavior, perhaps because they considered parameters where the
convective instability is direct rather tham oscillatory.

Busse and Clever [1] analyzed a system of three rolls, mutually oriented
at 60°. They found that the rolls cyclically replace each other due to the
Kuppers-Lortz instability, but the transition time from one roll to the next
grows exponentially as time goes on. The reason is that there is a
heteroclinic cycle connecting the rolls, which are saddle points in the three
dimensional phase space of time dependent roll amplitudes. (See Fig. 3).
This heteroclinic cycle is like an attracting limit cycle of ''infinite
period’' and the transition time from one roll orientatiom to the next
increases as the trajectory approaches the heteroclinic cycle. Busse and
Clever predicted that experimental noise would keep the transition time
finite, fluctuating about some mean value depending on the noise level.

Heikes and Busse [3,4] performed experiments on a rotating system using

shadowgraph visualization and found that the rolls aligned themselves in

1980 Mathematics Subject Classification. 76E15,
1 Supported by the Californmia Space Institute under Grant No. CS13-83

© 1984 American Mathematical Society
0271-4132/84 $1.00 + $.25 per page

Reprinted from Contemporary Mathematics, "Convection in a Rotating
Flui? Layer”, James W. Swift, (1984) Volume 28, pp. 435-448, by
permission of the American Mathematical Society.,
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randomly oriented patches about 5 to 10 rolls wide. There is a beautiful
film’of this experiment which shows one patch of rolls growing at the
expense of another, with the net effect of rotating the roll orientation at a
given point by approximately 60° as predicted.

The experiments of Heikes and Busse were done with methyl alcohol, which
satisfies the Boussinesq approximation [5] well, however this approximation
is poor in many geophysical and astrophysical examples of rotating
convection.

The purpose of this paper is to examine the model of Busse and Clever
[1] when non-Boussinesq effects are included and there is no noise. The
Boussinesq approximation causes a symmetry in the system of ODE's which
forces the saddle connections of the heteroclimic cycle. When the Boussimesqg
symmetry is broken, the saddle connections are broken to yield a long period
limit cycle.

The three dimemnsional ODE with non-Boussinesq effects included has many
secondary bifurcations., The bifurcations of fixed points are computed
explicitly, but there is also a global bifurcation of a limit cycle which has
not yet been analyzed completely, but which may indicate deterministic
chaotic dynamics.

In section 2 the three dimensional system of ODE’s is derived from the
convection PDE’s, and the symmetries of the two systems are related. In

section 3 the ODE's are analyzed and the bifurcation diagrams are drawn.

2. FROM PDE's TO ODE’'s. The equations describing convection in & rotating

fluid layer, suitably non-dimensionalized, are [2]:

V- ®u=20

1 {ou E '
;(5-‘5+(3'v)u*)=—vn+(0+e92)2+?5x-cé+v21? (D
8 - .

5; +u-"V3=Ru- 2+ Vze.

The dependent variables are the fluid velocity U, the deviation from a
linear temperature profile ®, and a generalized pressure n which gives all
gradient forces, including the centrifugal force.

The dimensionless parameters are the Prandtl number P = v/k, the Taylor
number t? = (4de4)/V2, and the Rayleigh number R = (agATds)/vK, where V is
the kinematic viscosity, K is the thermal conductivity, 3 is the rotation
rate about a vertical axis, d is the thickness of the fluid layer, a is the
thermal expansion coeffiecient, AT is the temperature difference between the

top and bottom plates, and —-gZ is the acceleration due to gravity.



The equations (1) have the symmetry of the proper Euclidean group in the
horizontal (x,y) plane, that is, the semi-direct product of proper rotations

and translations SO(2) x Rz. The rotations are

X cos$ sing O x uy cosd¢ sind O uy

y }> [-sind cosd 0.;{ v | s [ v, })* | -sin¢ cos¢ O u (2a)
o o 1/\z W o o 1/\d

z z z

«”"E‘.n+n
The translations are

x\ /x +D

y y-PD; H ;*;,9'*e,n+n (2b)

z z

Note that the Coriolis force term (4 xtZ) is not symmetric under oriemtation

reversing transformations in the horizontal plane.

In addition, when ¢ = 0, the equations (1) have the Boussimesq Symmetry,

which is a midplane reflection coupled to a temperature inversion.

X X u u

b 4 x -
yiol vy ug }( Uy B +=-2, n+n (3)
z -z / , \ v, -uy )

This symmetry requires the validity of the Boussinesq approximation, which
says that all material properties, such as V and K, are independent of
temperature. For real fluids the Boussinesq symmetry is often broken because
the viscosity depends on temperature, but the term proportional to e in (1)
also breaks the symmetry and is mathematically simpler.

When the Prandtl number is greater than 1 the convective instability of
a roll is due to a single eigenvalue A passing through zero as the Rayleigh
number is increased beyond R,. As in Golubitsky et. al. [5], and Busse and
Clever [1], assume that the bifurcating solutions to the linear problem are a

linear combination of three rolls

3 >
; -
1(E,8) = Rel Ly aj(0e™ ' £(2)), 1 = (x,3.2)
where a; (i = 1,2,3) are complex amplitudes and ;i are three critical

wavevectors, mutually oriented at 120° in the horizontal plane, so that
-> - -+ -+ ~
ky + ky + k3 = 0 and k; " z=0.

With these assumptions, the Center Manifold Theorem [6] allows a

reduction of the PDE's (1) to a system of ODE’'s for the amplitudes ai(t).

a, = zi(aj. A, e, T, P) = Aa,

i higher order terms.
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As a result of the rotational symmetry (2a) the vector field g commutes

with a cyclic permutation of the a,'s (120° rotation in the x-y plane),

31(82' a3, al) = gz(al, as, 83). etc.,

and the complex copjugation of the a;’s (180° rotation in the x-y plane)
8;(3)) = 5508}
A reflection through a vertical plane, coupled with a reversal of the

rotation direction leaves (1) invariant, and the consequence for g is

g1(ay, a3, ay, =t) = gylaq, ay, sz, v,

however this is not a true symmetry unless t = 0.
The invariance of (1) under translations in the horizontal plane

> >

x *x + D implies that
- iid -> =
ik.-D - oik.-D
gile™?j aj) = e %} gi(aj)

Finally, the Boussinesq symmetry (3), if it holds, gives an inversion

symmetry

gi(-aj) = "gi(“j)'

The most general ODE with these symmetries is

By = Aag + eapag ~ ap(lag1? + alayl? + plagl?) + oca®, a%a, a2 (4)
plus c¢yclic permutations for a, and ag, where ¢ = 0 if the Boussinesq
symmetry holds, and @ = B if there is no rotation.

One effect of the & term is to cause the ai’s to become real. Let

+ = arg(ay) + arglay) + arglag), then

. aa - a ¥ aa,- a bk 8,8,~ a, &
PP G Wt e S o M S S i M = M PO
2ila, |2 2ila, |2 2ilayl?
1 2 3
. a a a, |a a ||a
T = —g sin o | 2" 3' + I ll 3I + 1—l|| Zl + 0(&3) + 0(a))
Iﬂll lazl |83|

Therefore ' approaches 0 or n, depending on the sign of e, and we can choose
a displacement B in (2b) that makes all the ai's real. Much of Golubitsky
et. al. [5] concerned the subtle effects on the phase P when & is perturbed
from zero., These complications also exist in the rotating problem, however
|2

3
the bifurcations that occur for A = 0(eZ) and iél lai = 0(c?) can be

studied by letting a; be real and truncating the ODE to third order. Let
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8y = x, 83 =y, 83 = 2, and truncate (4) to obtain

x = Ax + eyz - x(12 + ay2 + Bzz)
= Ay + ezx - y(y2 + az? + sz) (5)

(™8

= Az + exy - 2(z% + ax? + Byz).

Ne

These equations have the symmetry of a tetrahedron T, a 12 element group
of proper rotations about the origin in R3, generated as the semi—-direct

product of
(x,y,z) ~ (y,z,x), (x,y,z) + {-x,-y,2), and (x,y,z) + (x,-y,~z) (6)

When there is no rotation of the fluid layer a = § and the equations (5)
have the full symmetry of a tetrahedron Ty, a 24 element group generated by
(6) plus & reflection through the x = y plane:

(x,y,z) = {y,x,2). 7

The reflection symmetries severely limit the dynamic behavior possible
in (5) since a trajectory cannot pass through a hyperplane of reflection.
The case where a = B was studied by Buzano and Golubitsky (7], and Golubitsky
et. al. [5), where the parameter a is replaced by a = a/l-a.

When the Boussinesq symmetry holds e = 0 and the system (5) has the
symmetry Tp, generated by (6) and

(x,v,2) > (-x,-y,-z). (8)
The 24 element group Ty includes 3 roflections through hyperplanes, such as

(x,y,z) *~ (-x,y,2).

When a = B and ¢ = 0 the equations (5) have the full symmetry of a cube
{or octagon), Oy, which is a 48 element group gemerated by (6), (7), and (8).

Finally, when a = f =1 and ¢ = 0, the equations (5) have spherical

symmetry, 0(3).
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Fig. 1 The symmetries of (5) as represented on a cube. Planes of reflection
are indicated by dotted lines.

3. THE BIFURCATION DIAGRAMS. First consider the Boussinesq system (e = 0),
which was studied by May and Lecnard [8] as a model of population dynamics.

This special case is important hecause it is an organizing center. For a

generic system the non—degenmeracy condition e # 0 is likely to hold. In the
non~degenerate bifurcation, however, only the solutions which branch off the
conduction solution (i.e. x=y=2z=0) are captured by a local analysis.

Therefore onme studies the degenerate bifurcation, with € = 0, and the

unfolding, where ¢ is perturbed from zero. Secondary bifurcations can be
analyzed when ¢ # 0, and these bifurcations are guaranteed to occur when g is
sufficiently small. In practice this often gives qualitatively correct
behavior even when € is quite large.

The stationary solutions of (5), when ¢ = 0, are of four types:

Name Multiplicity Equation Eigenvalues
Conduction (C) 1 x=y=2z=0 ~A,=A,-A
Roll (R) 6 x%=n, y=z=0 -2x2,(1-p)x2,(1-a) 2?2
2 A .
Hexagon (H) 8 x =y2=zz=I:;:F —21,(a+B-2)x2¢1;3(a—B)12
General Solution (G) 12 2 = Aa-1 “2h, 2rle-1)(p-1 ,
ap-1 ap-1
2 _ A(B=1) -A{(a-1) (B=1) +(a=B)?]
YT ap-1 ap-1

255



For rolls and general solutions there are additional solutions related
to those listed by the symmetry (see Fig. 1). The eigenvalues of the Jocobian
matrix of (5), evaluated at the stationary solution, determine the linear
A negative eigemvalue is stable.

only exist when (a-1)(f~-1) > 0.

stability of each solution type.

The general solutions In the

complementary parameter region there are instead the heteroclinic cycles

(HC) mentioned in the introduction, which connect 3 rolls as shown in the

phase portraits accompanying the bifurcation diagrams (see Fig. 3).
The qualitative behavior of the system (5) can be summarized by drawing

bifurcation diagrams for variove fixed values of the parameters a and PB. The

2

bifurcation diagrams plot (12 + y© o+ z%) as a function of A.

224 g2 4 g2

The quantity
+ 2z is proportional to the convective heat flux (Nusselt # - 1) and
A is proportional to the amount of temperature difference above critical
(R - R,).

temperature difference is quasistatically increased,

These bifurcation diagrams describe an experiment where the

T>1.22285
2k 0 ™ f‘T=O

0 0.8
0 1 2

Figure 2. The o - P parameter space is divided into open regions by the
lines e =B, a =1, =1, and a = B, and a + B =2. (Only « and B positive
are considered for simplicity). Within each region the behavior of the
system (5) is qualitatively similar. A reversal of the rotatiom rate (t >-1)
interchanges ¢ and B, so only a > B need be considered. The dotted line
summarizes the results of Kuppers and Lortz [2] for infinite Prandtl number
and stress—free boundary conditions. Regions III and IV may be relevant for
other convection systems,
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The bifurcation diagrams of (5) when ¢ = 0. The Roman numerals
correspond to the regions in the a - B plane shown in fig. 2.
types are: R

The solution
roll, H = hexagon, G = general, and HC = heteroclinic cycle.
The stable solutions are drawn with a bold line, or solid dots.
portraits are schematically drawn for A > 0, where x, y,
dependent roll amplitudes.

z are the time
The spheres represent attracting invariant
These surfaces are not smooth unless a + f = 2.
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Fig, 4 The bifurcation diagrams of (5) for ¢ > 0, along with phase portraits
at selected values of L. The solution types are abbreviated as in fig. 3,
except LC = limit cycle. Im regions I and IV both A > Ay and A, { Ay are
possible, although only the latter is drawn, When e ¢ 0 the twg types of
hexagons, H" and H™, are inequivalent. The four ot solutions, related by the
symmetry (6), are situnted on the vertices of a tetrahedron in phase space.
In the original fluid layer HY solutions have flow up in the center of the
hexagon and down on the sides. The cell walls form a honeycomb pattern,
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When ¢ # 0, the stationary solution types are as follows:

Name Multiplicity Equation Eigenvalues
Conduction (C) 1 x=y=2=0 =A,=A,—A
Roll (R) 6 2on,y=2=0 -2x2,
2-ef 2,
2
V1/4(a-p)2x%+e242
2
+ - . eRVESH+4A(ltat oy
Hexagon (H' or H) 4.2 x=y=z= 2(1+a+p) 2A-e,
HY if sgn(x)>1 2A-(a+p+4)x2 +
H™ if sgn(x)<1 i/§>(a—5)xz
General (G) 12 xz#yZ#zz Unknown
2
2 2 _ eZt(atp=2)
2oyl ap-1

2

The values of x2,y2. and z” for the general solution are the three roots

of the cubic in x2:

6 _ [e2 + (a+p-2)2] 4 &l L(+arp)e? + ya] 2 . e252 -
x (af - 1) (ap-1)* y - T ep-1 %2

0.

where y = 1/2 [(a - )2 + (a - 1)2 + (p - 1?)
§=(a-1)(B-1) x - 2

This expression was found by Ken Rimey, using Vaxima and some clever
tricks. Vaxima is a Berkeley variant of Macsyma, a computer program developed
at MIT for doing algebraic calculations. The eigenvalues of the general
solution have not been computed, but they are known when e2 (< A(same
as e = 0), and when the general solutions are created at the pitchfork
bifurcation of the rolls, to be discussed below.

There are many secondary bifurcations:

1) Saddle-node of hexagonms. As A is increased past lsn two hexagons appear
with nonzero amplitude.

2

~€

Asn = 4(1+a+B)

e
Tsn T 2(1+a+f)

2) Pitchfork of a roll, creating two general solutions at

2

2 el
P o (a-1) (p-1)
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The general solutions exist for A > AP. and have the same stability near

the bifurcation as the volls have for A < kp.

3) Hopf of a hexagon, creating a limit cycle at

e = 252(u+ﬂ+4) o = 2¢
_ "
(a+p-2)2 (a+B-2)

The sub- or supercriticality of the Hopf bifgrcation can be computed
relatively simply by exploiting the 23 symmetry about the x=y=z axis. Rotate
and translate to the coordinates (u,v,w), where the Hopf bifurcation is at
the origin and w is the axis of 3-fold symmetry. Let £ = u + iv, then the
vector field has the symmetry & =+ ei2n/3€ , w*w, and consequently the Taylor

expansion about the fixed point at A = XH' is:

o= iub+cE2 4 w812 svwbe L.

—dw + elT1% + ...

£
]

where w, d, and e are geal. and O, yu, and V are complex.

The center ménifold calculation is trivial due to the symmetry:
w = e/d|i|2. On the bowl shaped center manifold one can change coordinates
so that the radial coordinate satisfies

£ = Re(p + Ve/d)r3 z —ar3,

When a > 0 the bifurcation is supercritical, meaning that there is a stable
limit cycle created as A is varied (assuming d > 0). When a < O the
bifurcation is subcritical, and there is an unstable limit cycle near the

bifurcation [6].

For the Hopf bifurcation in (5) one finds

2 (otB-2) (a+p+4)
9 (atp+2)

a =

The linear stability of the hexagon and the sign of a determine the
stability of the limit cycles, and indicate that the limit cycles exist for

A2 Ay

4) A pglobal bifurcation occurs when the limit cycle collides with three

general solutions. The period of the limit cycle increases until three
generel solutions are comnmnected in a heteroclimnic cycle at kg. As A is
increased beyond A, the saddle connections are broken and there is no more

8
limit cycle. Assuming the eigenvalues of the general solution are real, the
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global bifurcation proceeds as shown in fig. 5. This is sure to be the case
near ¢ = B since the trajectories in the neighborhood of the hexagon are

strongly attracted to the plane normal to the x=y=z axis.

e I
«p L/ < i
’\uf ) ‘/ /7—\\

Y<A, A=A o),

Fig., 5. The global bifurcation when the eigenvalues of the general solution
are real. When a = f§ the three general solutions pass through the hexagon
solution at Ay and there is no Hopf bifurcation nor global bifurcation.

Since the ODE is actually three dimensional rather than two dimensional,
there is the possibility of chaotic dynamics. As the 1imit cycle grows it
could period double and become ''strange'’. This would be particularly
likely if the two attracting eigenvalues of the general solution are
complex. Then the saddle connections, or heteroclinic cycle, would appear as
in figure 6. Given certain conditions on the eigenvalues [9] there would be
chaotic solutions near the heteroclinic cycle. This chaos is, however, very

subtle since most trajectories escape to one of the roll solutionms.



Fig. 6. Possible heteroclinic cycle, an alternative to fig. 5.

4. CONCLUSION. The idea that turbulence may be described as a strange
attractor in the dynamical system of the fluid equations has been around for
two decades now [10], and there is some experimental verification of this
notion [11], however this has never been rigorously demonstrated for any real
system. The transition to turbulence in a rotating fluid layer is well suited
to small amplitude investigation, although much work remains to be done. In
particular, the spatial dependence (i.e. patch structure) has been ignored.
Rotating convection has three properties which may be generally useful
in searching for systems where deterministic chaos is present in the center
manifold ODE's. First, there is a high degree of symmetry, which forces the
center manifold to be multidimensional. Second, when a portion of the
symmetry is broken the secondary bifurcatioms can be analyzed in the
unfolding of the degenerate bifurcation. Finally, the symmetry does not
include hyperplanes of reflection which would severely limit the possible
dynamical behavior,
I would like to thank Edgar Knobloch for encouraging and supporting
this work, and Ken Rimey for performing or verifying many of the calculations

using Vaxima,
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Appendix C

Hopf Bifurcations with Z; Symmetry

In general, a tedious but straightforward calculation is needed to deter-
mine whether a Hopf bifurcation is subcritical or supercritical. The calculation
is made simpler by exploiting the symmetry of the problem. This appendix
describes techniques that simplify the calculation when the bifurcation occurs
on the axis of a 3-fold rotational symmetry. This Zg symmetry comes about in a

natural way whcn there is a cyclic permutation symmetry in a three dimen-

sional ODE:
z=f(zy.2)
¥y =f{y.z.zx) (1)
z=f(z.z.y)

The line z =y =z is invariant, and the permutation
(z.y.2)+(y.z.z)
is a rotation of 120° about this axis (z, y, and z are assumed to be real Carte-
sian coordinateé). When there is no further symmetry, a fixed point on the
invariant axis will typically lose stability via a saddle-node bifurcation when the
null eigenvector is along the axis, or a Hopf bifurcation when the two dimen-

sional null eigenspace is perpendicular to the invariant axis.

One can in general choose the coordinate system so that the bifurcating
fixed point is at the origin. It is usually more efficient to rotate the coordinate
system to take advantage of the symmetry before translating the system.

Therefore it is not assumed that the bifurcation is at the origin.

This work is motivated by the Hopf bifurcations which occur in two systems
of ordinary differential equations which arise in the study of convection in a

rotating fluid layer;
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z = x+eyz —z{x+ay?+p27) (R)
and
z = Az —z(z+ay +8z )+z (C %+ Coy?+ Ca2”+ Cyzy + Cszz + Cyz ). (3)

Each equation has two partners which are related by the permutation sym-
metry (1).

This appendix describes how to efficiently transform from the Cartesian
coordinates to a coordinate system where the sub- or supercriticality of the

Hopf bifurcation is more easily computed.

The change of variables

Consider the following linear change of coordinates:

W VIV
wl=2l 0 /T /||y @)
2w 1 1 1 z

Now the w axis is the axis of three~fold symmetry. It is useful to use a complex

coordinate in the perpendicular plane. Let

£= vl_—é-(u—iv), = —_\/%(uﬂlv).

The change of coordinates is now

£ 17 oz
< 1 —
£ =3 1 o o)yl (5)
w 11 1]l=
where
o = et®n/3, (6)
The following relationships are useful:
1+0+5 =0,

The inverse of this transformation is

z) |11 1][¢
y|=|0 7 1||£]. (7)
4 o 0 w



266

Note that equation (4) is an orthogonal transformation and equation (5) is
a unitary transformation, aside from factors of V3 and —iV3, respectively. The

normalization used here is more convenient.

The three-fold rotation about the w axis is

x| iy 0 1 Off=x
yi»l2z{=]0 0 1|ly
z x 1 0 0j(=z
In the new coordinates this is
¢ g olfo 1 o]|1 1 1[¢ g 0 0}¢
E—»%—-lo& o tllc 5 1||Z|=o 7 of|E].
w 11 1({1 O OJlg ¢ 1llw 0 0 1j{w
The result is that
z Y ¢~ af
y - 2 is equivalent to § - &¢. (8)
2 >z w - w

The ODE is equivariant under the Zg symmetry, which gives

HotoEw) = ot Ew)

£(0¢,08w) =TE(£,Ew)

w(ot,otw)=w(¢tEw).
So far, £ and E are treated as independent variables. There is another sym-
metry of the complex system due to the fact that it is derived from a real sys-

tem. The ODE is equivariant under the Zi; symmetry of complex conjugation

which gives

E>¢&, E> &, w > w, and
a » @, where @ is any complex constant.

The resulting equivariance of the vector field is

{Ewia) =E(tFwa)
HEtw:a)=£(¢Ewia)
w(tbw:@)=w(téwa)

The constant o is appended to the arguments of the ODE to describe how com-

plex numbers are treated by the symmetry. Because of the Z; symmetry £ and
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£ are no longer independent. The equation for E is superfluous since it is just

the complex conjugate of the equation for E

The invariant functions

Clearly any function of w is invariant, but the monomials of ¢ and ¢
transform under the Zz symmetry as
Sngm . onamsngm_
This is Zg-invariant provided
(n—m )(mod3) =0.
The Zis-invariant functions (these are not the true invariant functions) can be

written as

J(1€1%8w), (9)
where f is any complex function. In addition, the invariant functions must be
real. Therefore, the invariant functions are of the form

Rel[f (| €]%€5w)]. (10)

This includes terms like
atB+ags.
The equivariant vector fields
Since w itself is an invariant function, 4 is an invariant function:

w =Re[fo(1£]26%w)].
The equivariance conditior for monomials in ¢ and £ which occur in £ is
ERET s g g™ ERE™ = o™ ™, therefore 0" F™ = 0.
If n >m then g™ = g{nm)modd) therefore (n—m)(mod3) = 1.

If m >n then g"g™ =g™m™)md3) therefore (m —n)(mod3) =2.

Each equivariant monomial can be multiplied by an invariant function to obtain

the set of equivariant vector fields:

E=£f (1612w +EF (1412 w) +€0 7 (1612w + 857 s([ €[2w)+ - -

The functions f, could also be the general invariant functions {10), but this is
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unnecessary. The definition used here is somewhat simpler since the f, are

uniquely defined for a given vector field.

An alternate description is

£=tg (€265 w)+Eg,(1 |28 W),

where g, and g, are complex functions (9).

Hopf bifurcations

The Taylor expansion of an equivariant ODE about a fixed point is
E=AE+LLETC EwHCEl+egt | 8]+ O(EwR ER ¢%) (11)

w=dwtde| 12+ 0(wiw [ £]2.6°)
where ¢, € € and A, w, d, €IR.

At a Hopf bifurcation A=0 and w#0. There is a near-identity change of

coordinates,

Ca

L

3iw >’
such that the ODE is

FoiwF+obwregt |T|R+ - .
Note that the quadratic term, é: €%, has been eliminated.

The approximate calculation of the center manifold is trivial due to the
symmetry: w must be an invariant function of § which is zero at £ =0. The only

possible choice is

dsp
w = —d—|€|2+0($3)-
1
This part of the calculation can be extremely tedious without the symmetry.

Therefore, on the center manifold and near A= 0, the ODE is

: ) da
E=XTria (oo, R 2.
It is illuminating to write this ODE in polar coordinates. Let ¢ =7e'?, then

F = Ar —ar?
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¥ = w—br?
d
where a = -Re{cg—c; —c-i—z—-) (12)
1
d
and b = ~Im(cg—c, —=).
dy

At a subecritical bifurcation an unstable limit cycle is swallowed up by the
fixed point as A increases past zero. In a supercritical bifurcation a stable limit
cycle exists for A> 0 (assuming the flow is attracting in the w direction). Which

of these occurs depends on the sign of the Hopf parameter (a ).

supercriticalif a > O.

The bifurcation is | o poritical if o < 0.

The change of variables (revisited)

All that remains is to change variables from {z,y,2) to (¢,w). Then a trans-

lation along the w axis may be necessary to put the bifurcation at the origin.

From equation (5) the ODE is
€= L(z +0y +oz) (13)
w = é-(x +y +2)
where the right hand side must be written in terms of ¢, £, and w using equation

(7).

This section describes an efficient procedure for changing variables. It is
only necessary to transform the £ equation into the new variables. The full sys-
tem can then be recovered as follows: The first equation of system (1) can be

written as

Z =Re[ fo(|£]2.65w)] (14)
+Ef(1g]2w)+Ef (1 €]%w)
+&88 2| €12 w)+ 63 2([¢ [P w)
+&0F (1 €12 w)+ 8 (TP w)+

since the right hand side is an arbitrary real function. The change of variables

(7) transforms system (14) into



270

E=tf (1612 w)+ 81 o(1£]2w) +81f (1 €]2w)+ - - (15)
w =Re[fo(]£]%.6%w)].

Therefore one can pick out the terms that are necessary to calculate the criti-

cality of the Hopf bifurcation, namely fg and f;.

To prove this, use the fact (equation [8]) that the permutation z -y »2 is

equivalent to (¢ - 0, w »w). Therefore the expression (13) for £ implies that

Y =Relfo(|£1%.6%w)]
+obf (€12 w)+oef ([ £17%w)
+o8f o(1€12w)+5e3f o(T€[7w)
+ogtf (1€12w)+ae'f ([ €]2w)+ - -
(18)
z =Re[ fo(] €]%.6%w)]
+5¢f (1 €12w)+obf (([€]2w)
+OEf (| €1%w) +aF ([€]7w)
+5¢4f (1612 w)+ o€ o ([€1Pw)+ - .
Equation (15) follows easily from (13), (14), and (18), using l+o+7=0 and

14+0G+00=3.

Tables of nonlinear terms

More can be done to aid the calculations. It is relatively simple to con-
struct tables of all the information needed to compute the Hopf bifurcation
parameter {12) for a bifurcation occurring anywhere on the symmetry axis,
when the original system (1) is cubic. The right hand side of z = f (z,y,2z) must
be written in terms of £ and w. A simple calculation gives

z?= (R¢w +2| £ |2 +w?) +(E3+ 2+ 2¢w) (17)
y?=(Rotw +2| £ | R+ w?) + (672 +02¢%+ 2T ¢w)
2% = (RG¢w +2| ¢ |2 +w?) + (o%E2+ 5% ¢+ 20w )
ete.

Only the first three terms are needed for the calculation of the Hopf parameter.
The ¢w and w? terms are necessary if the bifurcation is not at the origin, as in

the motivating equations {2) and (3). In addition, only the real part of the
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coefficients of éw are needed.

In this way, all the essential elements can be computed for all the qua-
dratic monomials in (z,y.z). For instance
YR~ —lgw +2| £]2+w?,
where the ~ represents the equivalence relation obtained when the unneces-

sary terms are dropped.

gw | [£]2 | w?

z? 2 2 1

yRr2? || -1 2 1
i 1 —

Y ~M T2 7 1 1

yz -1 -1 1

The first two rows give the essential information of equations (17), and the
other rows are similar. In producing these tables, it helpful to use the “sym-

metry”’

T, Y22, 2-Y
o -0, but £ » £,

which corresponds to changing the handedness of the system. For instance z?
is obtained from y?® by interchanging ¢ and @, but since Re(g) =Re(7) = —% the

two rows in the table are identical (i.e. y? ~ z?).

The cubic monomials can be tabulated in the same way.



Elel? | tw® | 1£]Pw | wB
z3 3 3 6 1
zy®r~zz? 2 0 0 1
z?y ~xz?2 -3 2 0 1
ryz 0 0 -3 1
y3~238 -3 -3 6 1
yRz ~yz? 0 2 0 1
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The important terms in the general monomial can be calculated as follows.

Use the binomial theorem to expand

z" =[w+{¢+E)"
n{n—-1)}{n~2) w

=w" +nw“‘1($+§)+ﬂ%_——-—dzl) ™ R(¢+£)R+ 1 23 S

The Zz permutation symmetry implies

Y* =2 (fa o)
and
n — n
27 =T eme)

Let N =n;+ny,+n,, then a bit of algebra yields

n, T, . - —_ —
z oy vz~ wNV Ay wh T e Ay pw VR |2+ Ay qw N 3| €7,

where
An—1 =ngzton, +on,
An-z=ngz(n,~1)+ny,(n, —1)+n, (n, —1)—(n,ny +nyny +n,ny;)
and
AN_3=f(nz,ny,nz)+af ('n'y Nz -'nz)'*'a'_f (nzrnz-ny)x
where
n,(n,—-1)(n,—2)
flngmym)y= 22 e TE (1) (- 1))
+ny n, (nzz—l) in, n, ('nzy—l)
Example 1

When there is a Hopf bifurcation at the origin of the system (1) written in
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Cartesian coordinates, one must evaluate the Taylor series to third order to get

all the terms which contribute to the Hopf parameter. The arbitrary Zg invari-
ant ODE is

z =Lz + Loy + L3z

+ Q2%+ @y + @32 *+ Quzy + Qs z2 + Qoy2
+x(C1xP+ Coy®+ Caz?+ Cyxy + Csz2 + Cyz )
+Cyy3+ Caz3+ CoyRz + Croyz®+ - - -,

where the Linear, Quadratic, and Cubic coefficients are real. The linear part of

z, written in terms of ¢ and w, is

2= L(¢+E+w)+Lo(ot+GE+w)+ La(GE+oé+w)

=¢(Li+0 Lo+ T L)+ E(L1+TLa+alg)+w(Ly+ Lo+ L3).
Therefore, using (14) and (15),

£=¢(L,+0Lo+TLg)

w =w(L,+Ly+Lg).
The condition for a Hopf bifurcation is that

Ll—‘%(L2+L3) =0 (A=0)
and
Lo# Lg (w#0).
The important terms can be read off the tables:
£=[20,—(Qo+ Q3)+ 1(Qu+ Q5)~ Qo tw
+[301+%(Cz+cs)“g-(c4+Cs"'C?'*'Ce)]&"Elz
+i£(Real)+ O(£.¢w? €| €]*)

W = (Ly+La+ Lg)w +[2(Q,+ Qo+ @3) — (@4 + @5+ @g) | €| 2+ O(w?, [ £|*w).
From equations (11) and (12), the Hopf parameter is

_ [2(Q,+ @+ Q3)—(Q4+ Q5+ Qg)]

—'[BCI'I' 2—(02'*' CS)_%(C4+ C5+‘ C7+CB)]

This concludes the calculation for the general system (1) when the Hopf bifur-

cation is at the origin.
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Example 2

Consider the Hopf bifurcation in system (2),

Z =z +eyz —xz (z*+ay?+f2z7)
Using the tables, the ODE transforms to

£=N—stw —-3£w2—[3+%(a+ﬂ)]$ |¢12+i¢(Real )+ O(E%.¢] £1%).
w = Aw +ew?~(1+o+B)wd-6¢|%w —c| ¢}?

The Hopf bifurcation is at the simultaneous solution of two conditions. First,
the bifurcation is at a fixed point (w =0)

0 = A sw—(1+a+pB)w? (18)

Second, the linearization about the fixed point must be é = twf
0 = A—sw—3w?. (19)
The parameters g, a, and 8 are considered fixed, while w and A are adjusted to

satisfy equations (18) and (19). The solution is

_ R _ 2e%(at+f+4)
wyg = )\_t{ (a+ﬁ—2)2 .

When the origin is translated to w =wg, the following partial derivatives

must be calculated for the Taylor expansion of the ODE:

a.
aw—' A=Ay = —ef—6fwy
w=wy
= —SE ggigi]ﬂ)_
(at+pg—-2)
3 _ 2
_6-;1)— A=Ay —)\H+2£w;{—6|$] —3(1+rx+ﬂ)w§

w=wy

_gg2latfR)
62 (a+8+R2) 6115

Let W = w—wg. At A= Ay, the ODE has a Taylor expansion
; +6+10) , ~ -5, e~
= ~te B e0 (34 Sarp) e €2+ O(F 607

= et (B e ¢12-61 ¢ Py O(|£1%5.5%)
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_ (a+B+2) ~ (a+f+10)
= 682(a+ﬂ—-2)2w g (a+ﬁ—2)

Therefore, the approximation to the center manifold is

417

1 (a+B+10)(a+B—2) €]2
B¢ (a+B+R)
At £=0 the planes z =0,y =0, and 2z =0 are invariant. Therefore, as ¢ » 0 the

~
w = -

center manifold approaches the shape of the corner of a cube, and the curva-
ture at the fixed point approaches infinity. For any ¢ # 0 this singularity does

not effect the Hopf parameter, which is

__|_&g(a+p+10) ||_ 1 (a+B+10){a+B—-2)| 3
¢ = [ g%lﬁﬁ—z) ][ 5 (arArD) g (ath+2)

__ 4 (a+B+4)(a+B—R)
T 83 (a+B+2) )

This calculation could have been done using the results of example 1. The sys-
tem would first have to be translated (in Euclidean coordinates) to put the

bifurcation at the origin. The method used here is much more efficient.

Example 3

The third example arises from a special case of equation (2), when the qua-

dratic (and all even power) terms are zero due to an inversion symmetry
(z.y.z) » ~(z.y.2).
Assume a # § (this means that the fluid layer is indeed rotating). When a+8<?2
the complex pair of eigenvalues of the fixed point at £ =y =2 has negative real
part, and when o+f>2 the eigenvalue pair has positive real part. There must
be a Hopf bifurcation as a+g is increased past two. However, the case when
a+8 =2 is degenerate, and higher order terms must be added. In addition, an
unfolding parameter
M= a+f-2

is needed to describe the dynamics near the degenerate bifurcation. The fol-

lowing analysis is only valid when u << 1, since otherwise the secondary bifurca-
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tions predicted are at too large an amplitude.

When z replaces z®

, etc., and the time derivative is rescaled by a factor of
two, the fifth order system obtained from extending equation (2) can be written

as the third order system (3)

Z = z~z(z+ay +f2 )+z(Cz%+ Coy®+ Cyz?+ Cyzy + Csz2 + Coyz ).
While a complete understanding of this ODE is too difficult at present, it is

useful to analyze the Hopf bifurcation that accompanies the change of stability

of the fixed point at z =y = z. Using the tables, the system (3) is equivalent to

£= M—(2+ La+ LR)w E+[3C+ 3(Cpat Ca)=3(Cat Cs) 1€ £12+[3C 1+ 2(Cy+ Cs)J€w?
w = Aw —(R—a—B) | £|*F—(1+a+B)w+(6C,—-3Cq) | £|Pw +{C1+ Cat+ - -+ +Cg)w?.

The Hopf bifurcation occurs whenw =0 at £€=0

O=A—(l+a+B)w+(C;+Cot+ - -+ +Co)w?,
and ¢ = (pure imaginary)é+ - - - .

0=A-[2+(at+B)]w +[3€1+%(C4+ Cs) Jw?.

Subtract these two equations to eliminate A:

M= a+ﬁ—2 = —[4C1"‘2(Cg+03)+04+ Cﬁ"zCe]’UJH,
or
= i = _/""
2[2C1—C2—C3+%-(C4+C5)—C'3] A

Wy
A necessary non-degeneracy condition is that the denominator does not vanish.
Therefore assume that

A # O, Wy = 0(/.1,)-

The corresponding value of A is

Ay ={(pu+3)wy+(C+Cat+ - - - +Co)wf.

Since u is small,

Ag = 3wy +0(u?)

and the O{u*) terms can be neglected. It must be remembered that z, ¥, and 2

are non-negalive, since they are the square of the original coordinates. This
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wy Ay > 0.

The Taylor expansion is obtained using

Ehrery =[8C1+3(Cat Ca-CumCa) k1212

w=wy
B = =[2+ L( e[3c,+2(C
Bw MM +5(a+f)]6+2[3C + H(Cy+ Cs)Jwy
' w=wy

= -3¢+ 0(ué)

W=y, =(B8C-3Ce)l¢1Pwy+ultl?

wIwy
%5- hary = =(1+a+B)wy+(6C,~3C) [£12+(Cy+Cot - - - +Co)2wy?

w =Wy

= —Bwy+0(u?)+0(|¢]?).

The Taylor expansion about ¢=0, w =wy is
£=[3C+ 2(Co+ Ca=Cy=C5) 16 £12-3¢D + O (u) 4D
W = (8€,-3C) lelz[:,{i] +u|e|2—3[:,1&]m+0(u2wy)
where W =w —wy. The equation for the center manifold is

W= %[C1+Cé+cs—%-(04+ 05+CG)]‘€|2

and the Hopf parameter is

a= -Cl+2l—(cz+03+C4+Cﬁ)—C‘0.
Therefore, at Ay ® -3u/A > 0 there is a Hopf bifurcation which is subecritical
or supercritical depending on the sign of a. The ultimate fate of this limit cycle

as it grows is harder to figure out, since this involves a global calculation.

Conclusion

This .appendix provides a recipe for calculating the Hopf bifurcation

parameter which takes full advantage of the Z3 symmetry in systems defined by
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equation (1). The resulting formulas are remarkably simple considering the

complexity of the calculation without the symmetry.



PLEASE NOTE:

Page(s) not included with original material
and unavailable frorri author or university.
Filmed as received.

Pages 279 and 280

UMI



281

Heikes, K. E. and F. H. Busse, “Weakly nonlinear turbulence in a rotating con-
vection layer,” Ann. N. Y. Acad. Sciences, vol. 357, pp. 28-36, 1980.

Hirsch, M., C. Pugh, and M. Schub, fnvariant manifolds, 583, Springer lecture
notes, 1967.

Huppert, H. E. and P. C. Manins, "Limiting conditions for salt-fingering at an in-
terface," Dagp-Sea Res., vol. 20, pp. 315-323, 1973.

Huppert, H. E. and D. R. Moore, ""Nonlinear double-diffusive cenvection,” J. Fluid
Mech., vol. 78, pp. 821-854, 1978.

Jeflreys, H., "“The instability of a compressible fluid heated below,” Proc. Camb.
Phil, Soc., vol. 28, pp. 170-172, 1930.

Joseph, D. D., “Global stability of the conduction-diffusion solution,” Arch. Rz-
tional Mech, Anel,, vol. 36, pp. 285-282, 1970.

Joseph, D. D., Stability of Fluid Motions I, Springer Tracts in Natural Philosophy,
27, Springer-Verlag, Berlin, 1978.

Joseph, D. D., Stability of Filuid Motions II, Springer Tracts in Natural Philosophy,
28, Springer-Verlag, Berlin, 1978,

Knobloch, E. and M. R. E. Proctor, "“Nonlinear periodic convection in double-
diffusive systems," J. Fluid Mech., vol. 108, pp. 291-316, 1981.

Krishnamurti, R., “Finite Amplitude convection with changing mean tempera-
ture. Part 1. Theory,"” J. Fiuid Mech., vol. 33, no. 4, pp. 445-455, 1968.

Krishnamurti, R., “Finite Amplitude convection with changing mean tempera-
ture. Part 2. An experimental test of the theory,” J. Fluid Mech., vol. 33, no.
4, pp. 457-463, 1968.

Krishnamurti, R., “On the transition to turbulent convection. Part 1. The transi-
tion from two- to three-dimensional ﬂow." J. Fluid Mech., vol. 42, pp. 205-
307, 1970a.

Krishnamurti, R., **On the transition to turbulent convection. Part Ii. The transi-
tion from two- to three-dimensional flow,"” J. Fiuid Mech., vol. 42, pp. 309-
320, 1970b.

Kippers, G. and D. Lortz, "Transition from laminar convection to thermal tur-
bulence in a rotating fluid layer,” J. fluid Mech., vol. 35, pp. 609-620, 1969

Kappers, G., 'The stability of steady finite amplitude convection in a rotatmg
fluid layer,”" Physics Lettars, vol. 324, no. 1, pp. 7-8, 1970.

Malkus, W. V. R. and G. Veronis, “Finite amplitude cellular convection,” J. Fluid
Mech., vol. 4, pp. 225-260, 1958.

Marsden, J. and M. McCracken, The Hopjf Bifurcation and Its Applications,
Springer-Verlag, 19786.

Nagata, W. and J. W. Thomas, “Bifurcation in doubly-diffusive systems: Equilibri-
um Solutions 1,”" Preprint, Colorada State University, 1983.

Newell, A. C. and J. A. Whitehead, "Finite bandwidth, finite amplitude convec-
tion,” J. Fluid Mach., vol. 38, no. 2, pp. 279-303, 1969.

Palm, E., *“On the tendency towards hexagonal cells in steady convection,” J.
Fluid Mech., vol. 8, no. 2, pp. 183-192, 1960.



282

Pearlstein, A. J., "Effect of rotation on the stability of a doubly diffusive fluid
layer,’ J. Fluid Mach., vol. 103, pp. 389-412, 1981,

Rayleigh, Lord, “On convective currents in a horizontal layer of fluid when the
higher temperature is on the under side,” Phil. Mag., vol. 32, pp. 529-48,
1918.

Riahi, N., “Nonlinear convection in a porous layer with finite conducting boun-
daries,” J. Flwid Mach., vol. 129, pp. 153-171, 1983.

Rimey, K., “A system of polynomial eauations and their solution by an unusual
method,” SIGSAN, May 1984,

Sattinger, D. H., “Group Theoretic Methods in Bifurcation Theory,” Lecturs Notes
in Mathemetics, vol. 782, Springer-Verlag, Berlin, 1879.

Schliter, A., D. Lortz, and F. Busse, “On the stability of finite amplitude convec-
tion,"” J. Fluid Meach., vol. 23, pp. 129-144, 1985.

Segel, L. A. and J. T. Stuart, “On the question of the preferred mode in cellular
thermal convection,” J. Fiuid Mech., vol. 13, no. 2, pp. 289-308, 1962.

Segel, L. A, "Distant side-walls cause slow amplitude modulation of cellular con-
vection,” J. fluid Mech., vol. 38, no. 1, pp. 203-224, 19869.

Shirtcliffe, T. G. L. and J. S. Turner, “Observations of cell structure of salt
fingers,” J. Fluid fach., vol. 41, no. 4, pp. 707-719, 1970.

Spiegel, E. A. and G. Veronis, “On the Boussinesq approximation for a compressi-
ble fluid,” Astrophys. J., vol. 131, pp. 442-447, 1960.

Stommel, H.. A. B. Arons, and D. Blanchard, “An oceanographic curiosity: the
perpetual salt fountain,” Deep-Sea Kes., vol. 3, pp. 152-153, 1958.

Swift, J. W., Convection in a rotating fluid layer,” in Contemporary Mathematics,
vol. 28, ed. J. Marsden, pp. 435-448, American Mathematical Society, 1984.

Veronis, G., “Cellular convection with finite amplitude in a rotating system,” J.
Fluid Mech., vol. 5, pp. 401-435, 1959.

Veronis, G., “On finite amplitude instability in themohaline convection,” J. Har.
Res., vol. 23, pp. 1-17, 1965.

Veronis, G., “Motions at subcritical values of the Rayleigh number in a rotating
fluid,” J. Ffluid Mech., vol. 24, pp. 545-554, 1966.

Veronis, G., "Effect of a stabilizing gradient of solute on thermal convection,” J.
Fluid Mech., vol. 34, pp. 315-3386, 1968.

Veronis, G., Large-amplitude Bénard convection in a rotating fluid,” J. Fluid
Mech., vol. 31, pp. 113-139, 1968.

Walden, R. W. and G. Ahlers, “Non-Boussinesq and penetrative convection in a
cylindrical cell,’ J. Fluid Mech., vol. 109, pp. 89-114, 1981,

Weiss, N. 0., “Convection in the presence of restraints,” Phil. Trans. Rby. Soc.
Lon. A, vol. 258, pp. 99-147, 1964.

White, D., “The planforms and onset of convection with temperature-dependent
viscosity,” Preprint, Bullerd Laboratories, Cambridge University, 1983.

Whitehead, J. A. and B. Parsons, “Observations of convection at Rayleigh
numbers up to 760,000 in a fluid with large Prandtl number,” Geophys. As-
trophys. Fluid Dyn., vol. 9, pp. 201-217, 1978.



283

Whitehead, J. A.,, ‘Dislocations in convection and the onset of chaos,” Phys.
Fluids, vol. 26, no. 10, pp. 26899-2904, 1983.





