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Abstract

The theory of bifurcation with symmelry is applied to the onset of convection in
a fluid layer heated from below. Doubly diffusive convection illustrales the gen-
eral theory, which describes selection between the possible cellular patterns:
rolls, hexagons, triangles, squares, and rectangles. Double periodicity in Lhe
horizontal plane is imposed, thus allowing only a finite numher of convection
rolls to become unstable at the onset of convection. Each roll has a time-
dependent complex amplitude and the center manifold Lheorem allows a com-
plele‘description of the dynamics near the instability in terms of an ordinary
differential equation for the critical amplitudes. These ordinary differential
equations are called normal forms. For the cases discussed here Lhere are 1, 2,
3, 4, or B8 complex amplitudes (i.e. rolls) which go unstable simultaneously. The
normal forms have a high degree of symmetry which allows a complete charac-
terization of the dynamics in terms of a few parameters which cannol be elim-
inated through scaling. These parameters are evaluated for doubly diffusive
convection. A classification of all possible generic bifurcations is given for Lhe
simplest realization of ezch type of double periodicity. Some degenerate bifur-
cations and their unfoldings are classiffled. Since the classificatlion does not
rely on the details of the problem, this work is relevant to any bifurcation prob-
lem with the spatial symmetry of the plane when the instability has a preferred

wavelength which is neither zero nor inflnity.
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Chapter Two

Bifurcation Theory and Normal Forms

This chapter describes the bifurcations which can occur in convection
when the horizontal planforms are doubly periodic. For the results of this
chapter to hold, all that is required of a physical problem is that it be sym-
metric with respect to rigid moticns in a two-dimensicnal planc, that the linear
stability of the conduction solution has a real eigenvalue go through zero, and
that the wavelength of the most unstable disturbance is neither zero nor
infinity. The normal forms relevant to Hopf bifurcations, where the instability is
due to a complex conjugate pair of eigenvalues crossing into the right half
plane, are discussed in the next chapter.

The results of this chapter are based on the center manifold theorem. This
theorem allows the partial differential equations of convection to be reduced, in
certain cases, to a few ordinary differential equations. The chapter starts with
a review of bifurcation theory, and the simplest bifureations are introduced. An
understanding of these simple bifurcations is a prerequisite for what follows.

In section 2.3, an example of bifurcation with symmetry is discussed. This
example displays the essential behavior of many of the bifurcations which
occur in convection. Then, the least degenerate (simplest) bifurcations of con-
vection on a square or rhombic lattice are classified, using the correspondence
to the example studied earlier.

Convection on a hexagonal lattice must be treated separately from convec-
tion on the other lattices. The Boussinesq approximation plays an important
role in pattern selection on a hexagonal lattice. Four different normal forms
are appropriate, depending on the degree to which the Boussinesq symmetry is

valid.
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The chapter ends with a discussion of the lattice function, which displays
the results of all the lattices.
An intuitive, physical approach to the theory is used whenever possible,

rather than sophisticated mathematics.

2.1. A Quick Review of Bifurcation Theory
Bifurcation theory is the study of the branching of solutions of ordinary
and partial differential equations. This branching is always accompanied by a
change in the stability of the solutions. The stability properties of a stationary
solution are found by linearizing the equations about the fixed point. This
linearization is a linear operator. If the system is an ordinary differential equa-
tion, the linear operator can be represented by a matrix. The eigenvalues of
this linear operator {or matrix) determine the linear stability. For the discus-
sion below, assume that the system is an ordinary diflerential equation,
hereafter referred to as an ODE. Define X; and A; as the eigenvectors and
corresponding eigenvalues of the matrix. (In the case of partial differential
equations, the eigenvectors are replaced by eigenfunctions.} The genera!l solu-
tion of the linearized equations is a linear superposition of
x;e™. (2-1)
If all the eigenvalues have negative real part then any perturbation decays and
the fixed point is stable (to smali enough perturbations). if any eigenvalue has
a positive real part, then a perturbation along the corresponding eigenvector
will grow exponentially, and the fixed point is unstable, If an eigenvalue has
zero real part, then the nonlinear terms delermine whether a perturbation

along the corresponding eigenvector grows or decays.

The linear space defined by the set of eigenvectors whose eigenvalues have

negative real part is called the stable eigenspoace. Likewise, the center
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(unstable) eigenspace is spanned by the eigenvectors corresponding to eigen-
values with zero (positive) real part.

The center manifold is an cxample of an invariant manifold: a subspace ol

the phase space which is invariant under the dynamics. The stable, unstable,
and center manifolds are tangenL to the stable, unstable, and center eigen-
spaces of a fixed point, respectively. It is not obvious that such invariant mani-
folds exist. The center manifold theorem states that such an invariant manifold
does indeed exist. There are analogous theorems for the existence of the other
invariant manifolds (see Hirsch et al. 1967). The book by Marsden & McCracken
(1976) describes how the center manifold theorem is used in bifurcation theory.
The following statement of the center manifold theorem is taken from Marsden
& McCracken (1976, p. 47).
THEOREM: Let Z be a smooth Banach space and let Fy be u € semiflow defined in
a neighborhood of O € Z for Ost<t. Assume F;(0) =0 and that for £ >0, Fy(z) is
C*! jointly in t and z. Assume that the spectrum of the linear semigroup
DF(0):Z ~» Z is of the form &' 1Y) ypere a, lies on the imaginary aris and g,
lies in the left half plane Re{a;) < —a<0. Let Y be the generalized eigenspacs
corresponding fo the part of the spectrumm on the unit circle. Assume
dimY=d <oo.

Then there erists a neighborhaood Vof Oin Z and a C* submanifolid H CV of
dimension d passing through 0 and tangent to Y at O such that

(a) (Local invariance): [f z e M, ¢ >0, and Fy(z) e V.ithenF,(z)e M.

(b) (Local attractivity): [f £ >0 and FP(z) remains defined and in V for all
n=0,12 -, then F(z)+M asn + oa.

For what follows, it is not necessary to understand the details of this

theorem. However, a few remarks are in order:
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® The Banach space formulation is general enough to apply to the partial
different equations of convection.
* The correspondence between the notation in the theorem and that used

here is:
o= E}\! | RE(A’) =] oii
oz ={A;IRe();} < =0 <0};
Y =span{X; |Re(A;) = 0] is the center eigenspace;
M is the center manifold.

(=2-2)

® The dimension of the center eigenspace must be less than infinity, and
the stable part of the spectrum (oz) must be bourded away from zero. Both of
these conditions are violated in convection, unless double periodicity is
imposed.

Rather than present a rigorous mathematical Lreatment of bifurcation
theory, an example is used to illustrate the ideas. Consider the following sys-
tem of ODEs in the plane;

z=hr-z+zy {2-3)
¥ =-y+az?, (2-4)
where (2.1 )¢ R% and A and o are real, fired parameters.

Note that this ODE is symmetric under the reflection through the y axis.

(zy)+(-z.y). (2-5)
The point z=y =0 is a stationary solution for all values of A, and the lineari-
zation is
i=hz (2-6)
y=-y (-7
When A <0 the stable eigenspace is the whole z —y plane. When A >0 the stable
eigenspace is the y axis and the unstable eigenspace is the r axis. At precisely

A=0the z axis is the center eigenspace.
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The stable and unstable manifolds are both one-dimensional when A > 0.
These manifolds are invariani under the dynamics, and tangent to the stable
and unstable eigenspaces. Nole that the y axis, defined by z =0, is invariant
under the dynamics, since £ =0 when z=0. This result is forced by the sym-
metry (2-5); since the y axis is invariant under the reflection it is also invariant
under the dynamics. The y axis is therefore the stable manifold.

The unstable manifold can be written as a Taylor expansion,

v =az?+0(zY), (2-8)
where a must be determined. The fact that the unstable manifold is invariant
under the flow implies that

y =2azz + 0{z3). {2-9)
When the ODE (2-4) is substituted into this equation, one finds

~y +az?=2arz?+0(z9), (2-10)
which becomes

(—a+a)z? =2arz?+0(z?) (2-11)
when equation (2-8) is substituted for y. The above eguation determines a:

= (1+a2)\)"' (@12)

The unstable manifold, which exists for A> 0, is therefore

= 2—17“2—;)—:2+0(zﬂ). (2-13)

When A =0, the center manifold can be found by the same procedure:
y =az?+0(z3). (2-14)
It is natural to use = as the coordinate of the center manifold. This is done
by projecting the center manifold onto the z axis. The dynamics on the center
manifold are given by inserting {2-14) into equation {2-3):

= —:3+z{a22+0(:5)]

={a-1)z3+0(z"). (2-15)

Therefore the sign of (a —1) determines the stability of the origin. This stability
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(or instability) is very sensitive Lo perturbations in the equations, since any

linear terms will dominate the cubic terms when z is small enough.

A fixed point is called hyperbolic if it has no eigenvalues with zero real
part. The behavior of a hyperbolic fixed point is not sensitive to perturbations
in the equations. A theorem due to Hartman (1973) says that there is a
{nondifferentiable) change of coordinates which eliminates all the nonlinear
terms in the neighborhood of a hyperbolic fixed point. When A is fixed and
nonzero, the qualitative behavior of the nonlinear ODE (2-6), (2-7) near z=y =0
is the same as the linearization {2-3), (2-4). When XA is small, however, the
neighborhood of z=y =0 described in the theorem is also small.

In order to capture the transition from negative to positive A, the system is
extended to include A as an independent variable, treated equally with with

z and y. The resulting three-dimensional system of ODEs is

z = zx-z +zy (2-186)
¥ = -y toz? (2-17)
A=0. (2-18)

Now the center manifold is fwo-dimensional when A=0, and one-dimensional
otherwise. The center manifold at A =0 has coordinates {z.)A}. The dynamics on
the center manifold are
£ = Az +(a—-1)z3+ 0(25)+ 0 (Az )+ O(A2z) (2-19)
A=0. (2-20)
Note that the coefficient of the cubic term can be calculated at A =0. This
simplifies the calculations.

Assuming a #1, the variable z can be scaled by

I
Via-1

and the system can be truncated to give the normal form for the pitchfork

(2-21)

-

bifurcation:
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2 =Az+z% whena-1>0, and (2-22)
Z=Az-z% whena—-1<0. (2-23)

The pitchfork bifurcation is forced by the z + —z reflectional symmetry, The
equation for £ on the center manifold must have only odd order terms in z.

The bifurcation is a pitchfork provided the coefficient of z? is nonzero.

In order to deserve the designation as a normal form, it must be demon-
strated that the qualitative features of equation (2-22) or (2-23) are unchanged
by adding higher order terms, such as

o(z%), 0(rz?), and 0(A%z). (2-24)

The higher order terms do not change the qualitative features provided all of

the fixed points are hyperbolic when A#0. The analysis of the normal form

shows that the fixed points are indeed hyperbolic. In addition to the stationary
solution at z =0, there is a fixed point at

Atz?=0. (e-25)

The upper sign is for equation (2-22), and the lower sign for equation (2-23).

The linearization of the ODE about the new fixed point is

ot

= £2z?
oz AtzE=0

(2-28)

Therefore in the "+' version of the normal form (2-22), the nonzero solutions
are unstable, and exist for A<0. This is called a subcritical bifurcation. Con-
versely, the normal form (2-23) corresponds to a supercritical bifurcation,

where the nonzero solutions are stable and exist when A > 0.

It is a general feature that subcritical solutions, i.e. those coexisting with a
stable solution at the origin. are unstable. On the other hand, supercritical
solutions have a stable eigenvector pointing in the direction towards the origin.

Fig. 2-1 gives a pictorial description of the two bifurcationa.
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Fig. 2-1. The bifurcation diagrams for the two cases of the pitchfork bifurca-
tion: (a) the supercritical bifurcation, equation {2-23), and (c) the subecritical
bifurcation, equation (2-22). These diagrams plot the solutions as a function of
the bifurcation parameter A. The stable solutions are indicated by thick lines,
and the unstable solutions by thin lines. The axes of (a) and (c) are shown in
fig. (b). A few Lrajectories of the two-dimensional system in z and A, equations
(2-19) and (2-20), are drawn in fig. (a).

The Hopf bifurcation is closely related to the pitchfork bifurcation. It
occurs when a complex conjugate pair of eigenvalues (A tiw) crosses into the
right half plane. The normal form for the Hopf bifurcation is

2 =(A+iw)z +az |z |2, (2-27)
where the z and a are complex, and A and o are real. This normal form can be
reduced to the pitchfork by writing z in polar coordinates,

z =re'’, (2-28)
The time derivatives of z and z are
(=2-29)

Z =Felf+igre'?, and # =7e WW—ipre-iv,

The time derivatives of » and ¢ can be isolated to give




