Right Triangle:

opposite

Pythagorean Identity: $(o p p)^{2}+(a d j)^{2}=(h y p)^{2}$
$\sin (\theta)=\frac{o p p}{h y p}$
$\cos (\theta)=\frac{\text { adj }}{\text { hyp }}$
$\tan (\theta)=\frac{o p p}{a d j}$

Fundamental Trig Identities:

- $\sin ^{2}(\theta)+\cos ^{2}(\theta)=1$
- $\sec (\theta)=\frac{1}{\cos (\theta)}$
- $\tan (\theta)=\frac{\sin (\theta)}{\cos (\theta)}$
- $\csc (\theta)=\frac{1}{\sin (\theta)}$
- $\cot (\theta)=\frac{1}{\tan (\theta)}$

Rules of logarithms: Suppose $x, y>0$.

- $\ln (x)+\ln (y)=\ln (x y)$
- $\ln \left(x^{a}\right)=a \ln (x)$
- $\ln (1)=0$
- $\ln (x)-\ln (y)=\ln \left(\frac{x}{y}\right)$
- $\ln (e)=1$
- $\log _{b}(x)=\frac{\ln (x)}{\ln (b)}$

Rules of exponents: Suppose $b>0$.

- $b^{x} b^{y}=b^{x+y}$
- $\left(b^{x}\right)^{y}=b^{x y}$
- $\frac{b^{x}}{b^{y}}=b^{x-y}$
- $b^{0}=1$ (so $\left.e^{0}=1\right)$

Straight line:

- Slope of the line passing through points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.
- An equation of the line with slope m and y-intercept b is $y=m x+b$.
- An equation of the line through point $\left(x_{1}, y_{1}\right)$ and having slope m is $y-y_{1}=m\left(x-x_{1}\right)$, or $y=y_{1}+m\left(x-x_{1}\right)$.

Quadratic formula:

If $a x^{2}+b x+c=0$ is an equation with $a \neq 0$, then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.

Area and Volume formulas:

- Rectangle
$A=b h$
- Triangle $A=\frac{1}{2} b h$
- Box
$V=\ell w h$
- Circle
$A=\pi r^{2}$
- Cylinder
$V=\pi r^{2} h$

Graph of functions:

Transformation of graphs:

Shifts: Suppose $c>0$
$y=f(x)+c$, shift the graph of $y=f(x)$ a distance c units upward
$y=f(x)-c$, shift the graph of $y=f(x)$ a distance c units downward
$y=f(x+c)$, shift the graph of $y=f(x)$ a distance c units to the left
$y=f(x-c)$, shift the graph of $y=f(x)$ a distance c units to the right

Scaling: Suppose $c>1$

$y=c f(x)$, stretch the graph of $y=f(x)$ vertically by a factor of c
$y=(1 / c) f(x)$, compress the graph of $y=f(x)$ vertically by a factor of c
$y=f(c x)$, compress the graph of $y=f(x)$ horizontally by a factor of c
$y=f(x / c)$, stretch the graph of $y=f(x)$ horizontally by a factor of c

Reflection:

$y=-f(x)$, reflect the graph of $y=f(x)$ about the x-axis. $y=f(-x)$, reflect the graph of $y=f(x)$ about the y-axis.

An even function satisfies $f(-x)=f(x)$.
An odd function satisfies $f(-x)=-f(x)$.

Inverse Functions:

$a=f^{-1}(b)$ means $f(a)=b$, for one-to-one functions f. $\theta=\arccos (x)$ means $\cos (\theta)=x$ and $0 \leq \theta \leq \pi$.

$$
\begin{aligned}
& \theta=\arcsin (x) \text { means } \sin (\theta)=x \text { and }-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} . \\
& \theta=\arctan (x) \text { means } \tan (\theta)=x \text { and } \frac{\pi}{2}<\theta<\frac{\pi}{2} .
\end{aligned}
$$

