## **Right Triangle:**





Pythagorean Identity: 
$$(opp)^2 + (adj)^2 = (hyp)^2$$

$$\sin(\theta) = \frac{opp}{hyp}$$
$$\cos(\theta) = \frac{adj}{hyp}$$
$$\tan(\theta) = \frac{opp}{adj}$$

# **Fundamental Trig Identities:**

# • $\sec(\theta) = \frac{1}{\cos(\theta)}$ • $\sin^2(\theta) + \cos^2(\theta) = 1$ • $\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$ • $\csc(\theta) = \frac{1}{\sin(\theta)}$

•  $\ln(x^a) = a \ln(x)$ 

**Rules of logarithms:** Suppose x, y > 0.

- $\ln(x) + \ln(y) = \ln(xy)$
- $\ln(x) \ln(y) = \ln\left(\frac{x}{y}\right)$ •  $\ln(e) = 1$

# **Rules of exponents:** Suppose b > 0.

• 
$$b^{x}b^{y} = b^{x+y}$$
 •  $(b^{x})^{y} = b^{xy}$  •  $\frac{b^{x}}{b^{y}} = b^{x-y}$  •  $b^{0} = 1$  (so  $e^{0} = 1$ )

## **Straight line:**

- Slope of the line passing through points  $(x_1, y_1)$  and  $(x_2, y_2)$  is given by  $m = \frac{y_2 y_1}{x_2 x_1}$ .
- An equation of the line with slope *m* and *y*-intercept *b* is y = mx + b.
- An equation of the line through point  $(x_1, y_1)$  and having slope *m* is  $y y_1 = m(x x_1)$ , or  $y = y_1 + m(x x_1)$ .

# **Quadratic formula:**

If 
$$ax^2 + bx + c = 0$$
 is an equation with  $a \neq 0$ , then  $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ .  
Area and Volume formulas:

• Triangle • Rectangle • Cylinder • Box • Circle  $A = \frac{1}{2}bh$ A = bh $V = \ell w h$  $A = \pi r^2$  $V = \pi r^2 h$ 

## **Unit Circle:**

Output of cosine corresponds to the x-values on the unit circle while output of sine corresponds to yvalues. For example:  $\cos(\frac{\pi}{6}) = \frac{\sqrt{3}}{2}$  while  $\sin(\frac{\pi}{6}) = \frac{1}{2}$ .



•  $\ln(1) = 0$ 

•  $\log_b(x) = \frac{\ln(x)}{\ln(b)}$ 

# **Graph of functions:**



# **Transformation of graphs:**

**Shifts:** Suppose c > 0y = f(x) + c, shift the graph of y = f(x) a distance *c* units upward y = f(x) - c, shift the graph of y = f(x) a distance *c* units downward y = f(x+c), shift the graph of y = f(x) a distance *c* units to the left y = f(x-c), shift the graph of y = f(x) a distance *c* units to the right

## **Scaling:** Suppose c > 1

y = cf(x), stretch the graph of y = f(x) vertically by a factor of cy = (1/c)f(x), compress the graph of y = f(x) vertically by a factor of cy = f(cx), compress the graph of y = f(x) horizontally by a factor of cy = f(x/c), stretch the graph of y = f(x) horizontally by a factor of c

## **Reflection:**

y = -f(x), reflect the graph of y = f(x) about the *x*-axis. y = f(-x), reflect the graph of y = f(x) about the *y*-axis.

## **Inverse Functions:**

 $a = f^{-1}(b)$  means f(a) = b, for one-to-one functions f.  $\theta = \arccos(x)$  means  $\cos(\theta) = x$  and  $0 \le \theta \le \pi$ . An *even* function satisfies f(-x) = f(x). An *odd* function satisfies f(-x) = -f(x).

 $\begin{aligned} \theta &= \arcsin(x) \text{ means } \sin(\theta) = x \text{ and } -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}, \\ \theta &= \arctan(x) \text{ means } \tan(\theta) = x \text{ and } \frac{\pi}{2} < \theta < \frac{\pi}{2}. \end{aligned}$