Name: \qquad
There are 2 problems, one on each side of the page. The problems have equal weight.
You may use your notes, and work with other people, but you may not use a calculator, etc.
The quiz is worth 5 class points. Missing the quiz gets 0 points, and taking the quiz in class (or with a make-up for an excused absence) gets at least 1 point.

1. A linear function f satisfies $f(5)=4$ and $f(6)=7$. Fill in the blanks with numbers.
(a) Write a formula for $f(x)$ using the point-slope form: $f(x)=\ldots(x-5)+\ldots$
(b) Write the formula for $f(x)$ using the slope-intercept form: $f(x)=$ \qquad $x+$ \qquad

MAT 136 (Calculus I), Prof. Jim Swift Worksheet $4=$ Quiz 1, Linear and Piecewise Defined Functions

Name: \qquad
There are 2 problems, one on each side of the page. The problems have equal weight.
You may use your notes, and work with other people, but you may not use a calculator, etc. The quiz is worth 5 class points. Missing the quiz gets 0 points, and taking the quiz in class (or with a make-up for an excused absence) gets at least 1 point.

1. A linear function f satisfies $f(5)=4$ and $f(6)=7$. Fill in the blanks with numbers.
(a) Write a formula for $f(x)$ using the point-slope form: $f(x)=\ldots(x-5)+\ldots$
(b) Write the formula for $f(x)$ using the slope-intercept form: $f(x)=$ \qquad $x+$ \qquad
2. Consider the piecewise defined function

$$
f(x)= \begin{cases}1+x & \text { if } x \leq 0 \\ x^{2} & \text { if } x>0\end{cases}
$$

Fill in the blanks: $f(-1)=_, \quad f(0)=_, \quad f(1)=_$.
Sketch graph $y=f(x)$ on the interval $-1 \leq x \leq 1$. As usual, draw a closed dot for a point on the graph, and an open dot for a point that is not on the graph.
2. Consider the piecewise defined function

$$
f(x)= \begin{cases}1+x & \text { if } x \leq 0 \\ x^{2} & \text { if } x>0\end{cases}
$$

Fill in the blanks: $f(-1)=\ldots, \quad f(0)=\ldots, \quad f(1)=\ldots$.
Sketch graph $y=f(x)$ on the interval $-1 \leq x \leq 1$. As usual, draw a closed dot for a point on the graph, and an open dot for a point that is not on the graph.

