MAT 136 (Calculus I), Prof. Jim Swift
 Worksheet 5, Slope of the tangent line

(a) Use the on-line desmos graphing calculator to graph $y=\frac{\sin (x)}{x}$.
(b) Note that the function is undefined at $x=0$. Use the graph to estimate the limit: $\lim _{x \rightarrow 0} \frac{\sin (x)}{x} \approx$ \qquad (Remember this for set 5, problem 10.)
(c) Put a point on the desmos graph at $P=(1, \sin (1))$. (Type in " $(1, \sin (1))$ ", not the numerical approximation.)
(d) Draw a line with slope m through the point P, with a slider for m.
(e) Use the slider to estimate the slope of the tangent line to the graph $y=\frac{\sin x}{x}$ at $x=1$. Change the limits of the slider to go from $m=-1$ to $m=0$, and try to get an estimate of m that is good to 2 significant figures. Fill in the blank: $m \approx$ \qquad
(f) Write an expression for the slope of the secant through $P=(1, \sin (1))$ and $Q=(x, \sin (x) / x)$. Note that the slope of the secant line is a new function of x. Fill in the blank:

$$
m_{P Q}(x)=\frac{-\sin (1)}{x-1}
$$

(g) Plot $m_{P Q}(x)$ with desmos. (You can just type the expression, without " $y=$ ".)
(h) Zoom in on this new graph to estimate the slope of the tangent line to the graph $y=\frac{\sin (x)}{x}$ at $x=1$, to three significant figures. Fill in the blank

$$
m=\lim _{x \rightarrow 1} m_{P Q}(x) \approx
$$

