MAT 136 (Calculus I), Prof. Jim Swift In-Class Worksheet: Derivative Shortcuts 4.

For each of these functions, fill in the blank with the derivative if you can do so using the rules we have learned so far in this class, possibly after an algebraic manipulation of the expression. Otherwise, write "Can't do yet."
Let $f(x)=x^{2}-3 x+7$. Then $f^{\prime}(x)=\quad, f^{\prime \prime}(x)=\quad$, and $f^{\prime \prime \prime}(x)=\quad$.

Let $g(x)=x \tan (x) . \quad g^{\prime}(x)=$

Let $h(x)=\sin (5 x) . \quad h^{\prime}(x)=$

Let $y=2 \sin (x)+3 \cos (x)$.

$$
\begin{aligned}
\frac{d y}{d x} & = \\
\frac{d^{2} y}{d x^{2}} & =
\end{aligned}
$$

Let $f(x)=\cos \left(x^{2}\right) . \quad f^{\prime}(x)=$

Let $y=\csc (x)$. When you see a "third string" trig function like this, immediately replace it with the equivalent in terms of sine and/or cosine. Thus $y=\csc (x)=\frac{1}{\sin (x)}$, and $\frac{d y}{d x}=\frac{d}{d x}\left[\frac{1}{\sin (x)}\right]=$

Note: Recall that $\sin ^{-1}(x)$ does not mean $[\sin (x)]^{-1}$, even though $\sin ^{2}(x)$ does mean $[\sin (x)]^{2}$. Instead, $\sin ^{-1}(x)$ is the inverse sine function. Do not confuse $\csc (x)=\frac{1}{\sin (x)}$ with $\sin ^{-1}(x)$

