MAT 136 (Calculus I), Prof. Jim Swift In-Class Worksheet: Derivative Shortcuts 4.

For each of these functions, fill in the blank with the derivative *if* you can do so using the rules we have learned so far in this class, possibly after an algebraic manipulation of the expression. Otherwise, write "Can't do yet."

Let
$$f(x) = x^2 - 3x + 7$$
. Then $f'(x) = 0$, $f''(x) = 0$, and $f'''(x) = 0$

Let $g(x) = x \tan(x)$. g'(x) =

Let $h(x) = \sin(5x)$. h'(x) =

Let $y = 2\sin(x) + 3\cos(x)$.

 $\frac{dy}{dx} = \\ \frac{d^2y}{dx^2} =$

Let $f(x) = \cos(x^2)$. f'(x) =

Let $y = \csc(x)$. When you see a "third string" trig function like this, immediately replace it with the equivalent in terms of sine and/or cosine. Thus $y = \csc(x) = \frac{1}{\sin(x)}$, and

$$\frac{dy}{dx} = \frac{d}{dx} \left[\frac{1}{\sin(x)} \right] =$$

Note: Recall that $\sin^{-1}(x)$ does not mean $[\sin(x)]^{-1}$, even though $\sin^2(x)$ does mean $[\sin(x)]^2$. Instead, $\sin^{-1}(x)$ is the inverse sine function. Do not confuse $\csc(x) = \frac{1}{\sin(x)}$ with $\sin^{-1}(x)$