MAT 136 (Calculus I), Prof. Jim Swift In-Class Worksheet: Derivative Shortcuts 5.

1. The function $y = \sin(x^2)$ is a composition of functions, y = f(g(x)), with

$$f(u) = sn(u)$$
 and $g(x) = x^2$. Compute the derivatives of f and g : $f'(u) = cos(u)$ and $g'(x) = 2x$. Practice the "eff of ex" notation:

$$f'(u) = 65$$
 (a) and $g'(x) = 2$. Practice the "eff of ex" notation:

$$f'(x) = \underbrace{\text{COS}(y)}_{\text{COS}(x)}$$
, $f'(y) = \text{COS}(y)$, $f'(3u) = \text{COS}(3u)$, $f'(x^2) = \text{COS}(x^2)$

Now evaluate the derivative, using the chain rule: $\frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x)$

$$\frac{d}{dx}\sin(x^2) = \cos(x^2) \cdot 2x$$
To show work, write this as the first step.

2. Let
$$h(x) = (x^2 + 3)^2$$
. Compute $h'(x)$ in two ways:

(a) By expanding h(x) to write it as a polynomial in standard form and then differentiating with the "old" rules.

$$h(x) = X^{4} + bx^{2} + 9$$

(b) Using the chain rule. N(x) = f(g(x)), where $f(u) = U^2$, $g(x) = X^2 + 3$

$$h'(x) = 10(x^2+3)^9 \cdot 2x$$

 $since f(u) = u^0, g(x) = x^2+3$
 $f'(u) = 10u^9 g'(x) = 2x$
 $f'(x^2+3) = 10(x^3+3)^9.$

b) is very very much work.

$$h(x) = X^{2} + ... + 3^{10}$$
is a complicated mess!

(Lee netwood (b)!

f (u)=24, 9'(x)=2X