MAT 136 (Calculus I) Prof. Swift
 In-class worksheet on Local Linearization: Feynman vs. the Abacus

First, read the story of Feynman vs. the Abacus. (Available on our web site, or via google search.) This worksheet will approximate $\sqrt[3]{1729.03}$ using a method equivalent to what Feynman did, but following the notation we use in our class. Use the facts, known by Feynman, that $12^{2}=144$ and $12^{3}=1728$.

1. (no technology) We want to compute $\sqrt[3]{1729.03}$. Define the function $f(x)=\sqrt[3]{x}$, so we want to approximate $f(1729.03)$. Feynman knew that
$f(1728)=\sqrt[3]{1728}=$ \qquad
This is the first approximation for $\sqrt[3]{1729.03}$, and getting this approximation brought sweat to the forehead of the guy with the abacus.
2. (no technology) To get a better approximation, we will use the local linearization $f(x) \approx \ell_{1728}(x)=f(1728)+f^{\prime}(1728) \cdot(x-1728)$. We already know $f(1728)$, so we just have to find $f^{\prime}(1728)$. Note that $f(x)=x^{1 / 3}$, and compute $f^{\prime}(x)$ below.
3. (no technology) Next, evaluate $f^{\prime}(1728)$ without a calculator. Write your answer as a fraction of integers. No exponents are allowed! Hint: Remember that $\left(x^{2}\right)^{3}=x^{2 \cdot 3}$.
4. (no technology) Putting the results of problems 1 and 3 together, the local linearization of $f(x)$ at $x=1728$ is
$\ell_{1728}(x)=$
5. (no technology) Now, approximate the cube root of 1729.03. Evaluate 1729.03 $1728=1.03$ in your head, and get an exact expression for $\ell_{1728}(1729.03)$ involving a fraction with 1.03 in the numerator.
$\sqrt[3]{1729.03} \approx \ell_{1728}(1729.03)=$
6. (yes technology) Now, unlike Feynman, use technologogy evaluate ℓ_{1728} (1729.03).

Round to 9 significant figures. Use "..." for rounding, as in $\sqrt{2}=1.41421356 \ldots$.. Feynman, without a calculator, computed the correction, Δf, to 1 significant figure.
$\sqrt[3]{1729.03} \approx$
7. (yes technology) Finally, find the true value of the cube root, rounded to 9 significant figures. (If you round to fewer than 9 significant figures, you get the same answer for 6 and 7.)
$\sqrt[3]{1729.03}=$

