MAT 136 (Calculus I), Quiz 7, Prof. Jim Swift

Name: \qquad
You may work on this in groups, but turn in your own quiz.
Let the function f be defined by $f(x)=x^{3}-3 x^{2}+1$ for this entire worksheet.

1. Compute $f^{\prime}(x)$ and find the largest interval(s) on which f is increasing, and on which f is decreasing.
2. Compute $f^{\prime \prime}(x)$ and find the largest interval(s) on which f is concave up, and on which f is concave down.
3. Fill in the blanks in these four sentences . Fill in the first blank with "increasing" or "decreasing", and fill in the second blank with "concave up" or "concave down".
On the interval $(-\infty, 0]$, the function f is
and
On the interval $[0,1]$, the function f is
and
On the interval $[1,2]$, the function f is
On the interval $[2, \infty)$, the function f is
and
and

MAT 136 (Calculus I), Quiz 7, Prof. Jim Swift

Name: \qquad
You may work on this in groups, but turn in your own quiz.
Let the function f be defined by $f(x)=x^{3}-3 x^{2}+2$ for this entire worksheet.

1. Compute $f^{\prime}(x)$ and find the largest interval(s) on which f is increasing, and on which f is decreasing.
2. Compute $f^{\prime \prime}(x)$ and find the largest interval(s) on which f is concave up, and on which f is concave down.
3. Fill in the blanks in these four sentences . Fill in the first blank with "increasing" or "decreasing", and fill in the second blank with "concave up" or "concave down".
On the interval $(-\infty, 0]$, the function f is
and
On the interval $[0,1]$, the function f is
and
On the interval $[1,2]$, the function f is
On the interval $[2, \infty)$, the function f is
and
and
