MAT 136 (Calculus I) Prof. Swift

In-class worksheet: Solving Initial Value Problem, using the FToC II

Recall this problem from the WeBWorK set on Indefinite Integrals:
"Consider the function $f(x)=x^{2}-1$. Let $F(x)$ be the antiderivative of $f(x)$ that satisfies $F(1)=3$. Then $F(x)=$ \qquad ." This is the same question as "Solve the Initial Value Problem $\frac{d y}{d x}=x^{2}-1, y(1)=3$."

Solution: $F(x)=\frac{x^{3}}{3}-x+C$ is the general antiderivative. Solve $F(1)=3$ for C. This is $\frac{1}{3}-1+C=3$, or $C=3-\left(\frac{1}{3}-1\right)=\frac{11}{3}$. So the solution is $F(x)=\frac{x^{3}}{3}-x+\frac{11}{3}$

The Fundamental Theorem of Calculus II allows us to write the solution as

$$
y=F(x)=3+\int_{1}^{x}\left(t^{2}-1\right) d t
$$

since $F^{\prime}(x)=0+\frac{d}{d x} \int_{0}^{x}\left(t^{2}-1\right) d t=x^{2}-1$, and $F(1)=3+\int_{1}^{1}\left(t^{2}-1\right) d t=3+0=3$.

1. Evaluate the integral in the displayed equation to get an explicit formula for $F(x)$.

Theorem: The solution to the Initial Value Problem (IVP) $\frac{d y}{d x}=f(x), y\left(x_{0}\right)=y_{0}$ is $y=y_{0}+\int_{x_{0}}^{x} f(t) d t$. The dummy variable t can be replaced by any variable, including x, to give a formula that you may prefer:

$$
y=y_{0}+\int_{x_{0}}^{x} f(x) d x
$$

2. Solve the IVP $\frac{d y}{d x}=x^{2}-1, y(1)=3$ using this new formula.
3. Solve the IVP $\frac{d y}{d x}=\sin (x), y(0)=0$.
