MAT 136 (Calculus I), Prof. Jim Swift
 Quiz 1, Linear and Exponential Functions

Name: \qquad
The 2 problems have equal weight.
You may use your notes, and work with other people, but you may not use a calculator, etc. The quiz is worth 5 class points. Missing the quiz gets 0 points, and taking the quiz in class (or with a make-up for an excused absence) gets at least 1 point.

1. A linear function f satisfies $f(5)=4$ and $f(6)=7$. Fill in the blanks with numbers.
(a) Write a formula for $f(x)$ using the point-slope form: $f(x)=\ldots(x-5)+\ldots$
(b) Write the formula for $f(x)$ using the slope-intercept form: $f(x)=$ \qquad $x+$ \qquad
2. An exponential function g satisfies $g(0)=3$ and $g(1)=6$. Find a formula for $g(x)$ in the form $g(x)=a \cdot b^{x}$.

MAT 136 (Calculus I), Prof. Jim Swift Quiz 1, Linear and Exponential Functions

Name: \qquad
The 2 problems have equal weight.
You may use your notes, and work with other people, but you may not use a calculator, etc.
The quiz is worth 5 class points. Missing the quiz gets 0 points, and taking the quiz in class (or with a make-up for an excused absence) gets at least 1 point.

1. A linear function f satisfies $f(5)=4$ and $f(6)=7$. Fill in the blanks with numbers.
(a) Write a formula for $f(x)$ using the point-slope form: $f(x)=\ldots(x-5)+\ldots$
(b) Write the formula for $f(x)$ using the slope-intercept form: $f(x)=$ \qquad $x+$ \qquad
2. An exponential function g satisfies $g(0)=3$ and $g(1)=6$. Find a formula for $g(x)$ in the form $g(x)=a \cdot b^{x}$.
