MAT 136 (Calculus I), Prof. Jim Swift Worksheet 7, on Continuity and Algebraic Limits.

1. The function $f(x) = e^{\cos(x)}$ is continuous on the set of all real numbers. Evaluate the limit. $\lim_{x \to 1} e^{\cos(x)} = \mathbf{Cos(1)}$, since f is continuous at K=1

2. The function $f(x) = e^{-1/x^2}$ is continuous on its domain. Note that f(0) is undefined. Can we conclude that $\lim_{x\to 0} f(x)$ DNE? No. Why or why not? Because fca) is undefined

3. Consider the function f defined by $f(x) = \frac{x^2-4}{x-2}$

(a) What is the default domain of f? (b) Find a function \tilde{f} such that: (b) Find a function \tilde{f} such that:

• The domain of \tilde{f} is all real numbers, and

• $f(x) = \tilde{f}(x)$ for all x in the domain of f.

 $f(x) = \frac{x-5}{x_5-4} = \frac{x-5}{(x+5)(x-5)}$ = x+2, provided X = 2 That is, f(x) = {x+2 if x = 2 f(x) = {undefined if x=2

is allowed when (im f(x) exists.

Here's a graph (im f(x)=L, and x+a f(a) is undefined.

So T(x)=x+2 satisfies both bull eted conditions.