MAT 136 (Calculus I), Prof. Jim Swift In-Class Worksheet: Derivative Shortcuts 4.

For each of these functions, fill in the blank with the derivative *if* you can do so using the rules we have learned so far in this class, possibly after an algebraic manipulation of the expression. Otherwise, write "Can't do yet."

Let
$$f(x) = x^2 - 3x + 7$$
. Then $f'(x) = 2 \times -3$, $f''(x) = 2$, and $f'''(x) = 2$.

Let
$$g(x) = x \tan(x)$$
. $g'(x) = 1 \cdot \tan(x) + x \cdot \frac{1}{\cos^2(x)}$

Let
$$h(x) = \sin(5x)$$
. $h'(x) =$ Cant do yet. (Requires chain rule)

Let
$$y = 2\sin(x) + 3\cos(x)$$
.

$$\frac{dy}{dx} = 2\cos(x) - 3\sin(x)$$

$$\frac{d^2y}{dx^2} = -2s\tilde{n}(x) - 3\cos(x)$$

Let
$$f(x) = \cos(x^2)$$
. $f'(x) = Cantdoyet$ (Requires clainfull)

Let $y = \csc(x)$. When you see a "third string" trig function like this, immediately replace it with the equivalent in terms of sine and/or cosine. Thus $y = \csc(x) = \frac{1}{\sin(x)}$, and

$$\frac{dy}{dx} = \frac{d}{dx} \left[\frac{1}{\sin(x)} \right] = \frac{0.5 \ln(x) - 1.605 \text{ (Sin(x))}^2}{(\text{Sin(x)})^2} = \frac{-605 \text{ (x)}}{\text{Sin}^2(x)}$$

Note: Recall that $\sin^{-1}(x)$ does not mean $[\sin(x)]^{-1}$, even though $\sin^2(x)$ does mean $[\sin(x)]^2$. Instead, $\sin^{-1}(x)$ is the inverse sine function. Do not confuse $\csc(x) = \frac{1}{\sin(x)}$ with $\sin^{-1}(x)$