MAT 136 (Calculus I), Prof. Jim Swift
In-Class Worksheet: The Chain Rule

Worth 5 class points. You may work in groups Name: k %/’
d

1. Chain Rule using the Leibnitz notation dy _ @_u

dr dudz
Let y = sin(z?). We can think of this as y = sin(u), where u = z2.

d
(a) Compute ;ly and d_u 0—-(1 = COSC“) Q‘_ﬂ. = l,(
Z du AKX
d dy d

(b) Compute d—y = Egd_z in terms of v and z and then substitute in u = z? to get &y in

terms of z alone.

5 = st 2x = eose) 2

2. Chain Rule using Newton’s Notation % flg(z)) = f'(g(z)) - ¢ (=)

The function y = sin(z?) is a composition of functions, y = f (g9(x)), with

=4 (\'\((A) and g(z) = K’z . Compute the derivatives of f and g¢:

= COS ( M) and ¢'(z) = o X . Practice the “eff of ex” notation:

— CoS(X), pi) = coS(j) , F'(3u) = £ qu) f_%)_ coS ( KL)

Now evaluate the derivative, using the chain rule: di flg(x)) = f'(g(x)) - ¢'(x)
d

L) = Co3CRY)- 3K



3. Let y = h(z) = (2% + 3)2. Compute % = h/(z) in two ways:

(a) By expanding h(z) to write it as a polynomial in standard form and then differentiating
with the “old” rules.
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(b) Using the chain rule. (You may use Leibnitz notation or Newton notation.)
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c¢) Show that you got the same answer in (b) and (c).
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4. Differentiate y = h(z) = (z + 1)!°. Note: One of the methods like 3(a) or 3(b) is very
very much work.
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