MAT 136 (Calculus I) Prof. Swift

In-class worksheet on Local Linearization: Feynman vs. the Abacus

Do this group work in groups of 3 or 4. When you finish, turn in *one* sheet per group. and do WeBWorK problems. key-

First, read the story of Feynman vs. the Abacus. (Available on our web site, or via google search.) This worksheet will approximate $\sqrt[3]{1729.03}$ using a method equivalent to what Feynman did, but following the notation we use in our class. Use the facts, known by Feynman, that $12^2 = 144$ and $12^3 = 1728$.

- 1. (no technology) We want to compute $\sqrt[3]{1729.03}$. Define the function $f(x) = \sqrt[3]{x}$, so we want to approximate f(1729.03). Feynman knew $f(1728) = \sqrt[3]{1728} = 12$. This is the first approximation for $\sqrt[3]{1729.03}$, and getting this approximation brought sweat to the forehead of the guy with the abacus.
- 2. (no technology) Note that $f(x) = x^{1/3}$. Compute f'(x).

3. (no technology) Show that
$$f'(1728) = \frac{1}{3 \cdot 12^2}$$
. Hint: $(x^2)^3 = x^{2 \cdot 3}$, $an(1728)^{\frac{1}{3}} = 12$

$$f'(1728) = \frac{1}{3}(1728)^{\frac{7}{3}} = \frac{1}{3 \cdot (1728)^{\frac{1}{3}}} = \frac{1}{3 \cdot$$

4. (no technology) To get a better approximation of $\sqrt[3]{1729.03}$, we will use the local linearization $f(x) \approx \ell_{1728}(x) = f(1728) + f'(1728) \cdot (x - 1728)$. Problems 1 and 3 say

$$\ell_{1728}(x) = 12 + \frac{1}{3.12}(x-1728)$$

5. (no technology) Now, approximate the cube root of 1729.03. Evaluate 1729.03 – 1728 = 1.03 in your head, and get an exact expression for $\ell_{1728}(1729.03)$ involving a fraction with 1.03 in the numerator.

$$\sqrt[3]{1729.03} \approx \ell_{1728}(1729.03) = 12 + \frac{(.0)}{3.12}$$

6. (yes technology) Now, unlike Feynman, use technologogy to evaluate $\ell_{1728}(1729.03)$. Round to 9 significant figures. Use "..." for rounding, as in $\sqrt{2} = 1.41421356...$

$$\sqrt[3]{1729.03} \approx 12.0023843...$$

7. (yes technology) Finally, find the true value of the cube root, rounded to 9 significant figures. (If you round to fewer than 9 significant figures, you get the same answer for 6 and 7.)

answer for 6 and 7.) (Both 10 unl to
$$\sqrt[3]{1729.03} = (2.002388...)$$

To relate this back to Feynman's story, he was able to approximate $\sqrt[3]{1729.03}$ by approximating $\ell_{1728}(1729) = 12 + \frac{1}{3 \cdot 12^2} = 12 + \frac{12}{3 \cdot 12^3} = 12 + \frac{4}{1728}$ without a calculator.