MAT 136 Week 4, Day 1: Limit Definition of the Derivative

The average rate of change of a function f from z = a to = b is the S\O € of
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It is also the slope of the tangent to the graph of f(z) at the point (a, f(a)). We

looked at this scenario in Week 1, Day 4. )
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To find the slope of the tangent at (a, f(a)), we can start with a secant through
another point on the graph (say, (a + h, f(a + h))), and then let h approach 0. Now
that we have limits, we can do this formally.
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Example 1. Consider the function f(x) = —2z+5. For each real number a, determine
the derivative of f at the point a.
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If f(x) = max + b (where m, b are constants), then for each a the derivative of f
at a is equal to ).
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Example 2. Find an equation for the tangent line to the graph y = 22 at = = 5.
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Example 3. The controls on your remote control car are malfunctioning, causing your
car to accelerate linearly. As a result, the current position p(t) of your car from your
starting point (in feet) after ¢ seconds can be modelled by p(t) = t* + 8¢. Determine
the instantangeous velocity of your car at ¢t = 2 seconds.
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Example 4. Find a formula for the instantaneous rate of change of the function
f(z) =1 at the point z = a, in terms of a. (Assume that a # 0.)
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