MAT 136 (Calculus I), Prof. Jim Swift In-Class Worksheet: The Chain Rule

Worth 5 class points. You may work in groups

Name: _

Let $y = \sin(x^2)$. We can think of this as $y = \sin(u)$, where $u = x^2$.

(a) Fill in the blanks. $\frac{dy}{du} = \cos(u)$ and $\frac{du}{dx} = 2$

(b) Compute $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ in terms of u and x and then substitute in $u = x^2$ to get $\frac{dy}{dx}$ in terms of x alone.

 $\frac{dy}{dx} = \cos(u).2x = \cos(x^2).2x$

2. Chain Rule using Newton's Notation $\frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x)$

The function $y = \sin(x^2)$ is a composition of functions, y = f(g(x)), with

f(u) = sin(u) and $g(x) = \chi^2$

. In the next line, compute the derivatives:

 $f'(u) = \cos(u)$ and g'(x) = (2x)

. In the next line, practice "eff of ex" notation:

 $f'(x) = \omega_s(x)$, $f'(y) = \omega_s(y)$, $f'(3u) = \omega_s(3u)$, $f'(x^2) = \omega_s(x^2) = f'(g(x))$

Now evaluate the derivative, using the chain rule: $\frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x)$

 $\frac{d}{dx}\sin(x^2) = \mathcal{OS}(\kappa^2) \cdot 2\chi$

3. Find the derivative of $y = e^{-x^2+x}$, also written as $y = \exp(-x^2+x)$, using both methods.

 $y = e^{u}$, where $y = -x^{2} + x$ problem y = f(g(x)), where $y = -x^{2} + x$ problem $y = e^{u}$, y = f(g(x)), where $y = -x^{2} + x$ $y = e^{u}$, y = f(g(x)), where $y = -x^{2} + x$ $y = e^{u}$, $y = e^$