Problem 1 on WeBWork set 8.
Find the volume of the solid whose base is the region enclosed by $y=x^{2}$ and $y=1$, and the cross sections perpendicular to the y-axis are squares.

Note that it talked about the cross section perpendicular to the \mathbf{y}-axis, not the x-axis.

In this figure, the base is orange. The cross section at $\mathrm{y}=y_{i}$ is a square with side length $2 \sqrt{y_{i}}$, so $\mathrm{A}\left(y_{i}\right)=$ $4 y_{i}$ and the volume of the slice between $\mathrm{y}=y_{i}$ and $\mathrm{y}=y_{i}+\Delta \mathrm{y}$ is $\Delta V_{i}=4 y_{i} \Delta \mathrm{y}$. Adding the volume of all these slices, and taking the limit of $\Delta y \rightarrow 0$ gives $V=\int_{0}^{1} 4 y d y=2$
$\ln [\rho]:=$

```
Graphics3D[{(*base*) Polygon[Table[{x, x', 0}, {x, - 1, 1, .1}]],
    (*face at y = 1 *) Polygon[{{1, 1, 0}, {1, 1, 2}, {-1, 1, 2}, {-1, 1, 0}}],
    (* square slices at y = constant *), Thick, Table[
        Line[{{\sqrt{}{y},y,0},{\sqrt{}{y},y,2\sqrt{}{y}},{-\sqrt{}{y},y,2\sqrt{}{y}},{-\sqrt{}{y},y,0},{\sqrt{}{y},y,0}}],
        {y, .01, 1, .1}],
    (* edge on right *)
    Line[Table[{\sqrt{}{y},y,2\sqrt{}{y}},{y,0,1,.1}]],
    (* edge on left *)
    Line[Table[{-\sqrt{}{y},y,2\sqrt{}{y}},{y,0,1,.01}]]},
    PlotRange }->{{-1,1},{0,1},{0, 2}}, Axes -> True, AxesLabel -> {"x", "y", "z"}
```


For 3 points of extra credit, find $\mathrm{A}(\mathrm{x})$ for this solid and compute the volume by integrating $\mathrm{V}=$ $\int_{-1}^{1} A(x) d x$.
Submit a paper version of the computation to Prof. Swift by Friday, September 28 at the beginning of class.

