MAT 137 (Calculus II) Prof. Swift In-class worksheet: Computing Volume by Cylindrical Shells

Let $f(x)=x+x^{3}$, and let \mathcal{R} be the region in the $x-y$ plane bounded by the curves $y=f(x), y=0$, and $x=1$.

1. Make a rough sketch of the graph $y=f(x)$. Hint: Calc 1 will help to make the sketch. Note that $f^{\prime}(x)=1+3 x^{2}>0$ for all x.
2. Sketch the region \mathcal{R}. Find the coordinates of the corners of the region.
3. Set up the integral for the volume of the solid obtained when \mathcal{R} is rotated about the line $x=2$.
4. What goes wrong if you try to compute the volume of that solid using washers?
