

1. Compute f_{ave} , the average value of f on [-1, 1].

2. Draw a horizontal line at $y = f_{ave}$. That height is the "cut-fill" height of the graph. Alternatively, the rectangle with width 2 and height f_{ave} has the same area as the area under y = f(x) with $-1 \le x \le 1$.

MAT 137 (Calculus II) Prof. Swift In-class worksheet: Average Value of a Function

1. Compute f_{ave} , the average value of f on [-1, 1].

2. Draw a horizontal line at $y = f_{ave}$. That height is the "cut-fill" height of the graph. Alternatively, the rectangle with width 2 and height f_{ave} has the same area as the area under y = f(x) with $-1 \le x \le 1$.

The graph of y = g(x) is shown, but the formula for g(x) is a secret.

3. One of the horizontal dashed lines is $y = g_{ave}$, the average value of g on [0, 2]. You can "eyeball" that height. Draw the horizontal line $y = g_{ave}$.

4. Estimate $\int_0^2 g(x)dx$. Hint: Plug the estimated value of g_{ave} into the formula for g_{ave} , and solve for $\int_0^2 g(x)dx$

3. One of the horizontal dashed lines is $y = g_{ave}$, the average value of g on [0, 2]. You can "eyeball" that height. Draw the horizontal line $y = g_{ave}$.

4. Estimate $\int_0^2 g(x)dx$. Hint: Plug the estimated value of g_{ave} into the formula for g_{ave} , and solve for $\int_0^2 g(x)dx$