MAT 137 (Calculus II) Prof. Swift

In-class worksheet: Average Value of a Function

The graph of $y = 1 - x^4$ is shown.

1. Compute f_{ave} , the average value of f on [-1, 1].

1. Compute
$$f_{ave}$$
, the average value of f on $[-1,1]$.

$$\begin{aligned}
\alpha &= -1, \ b &= 1, \ f(x) &= 1-x^{4} \\
f(x) &= -1, \ d &= 1-x^{4}$$

2. Draw a horizontal line at $y = f_{ave}$. That height is the "cut-fill" height of the graph. Alternatively, the rectangle with width 2 and height f_{ave} has the same area as the area under y = f(x) with $-1 \le x \le 1$.

The graph of y = g(x) is shown, but the formula for g(x) is a secret.

- 3. One of the horizontal dashed lines is $y = g_{ave}$, the average value of g on [0,2]. You can "eyeball" that height. Draw the horizontal line $y = g_{ave}$.
- 4. Estimate $\int_0^2 g(x)dx$. Hint: Plug the estimated value of g_{ave} into the formula for g_{ave} , and solve for $\int_0^2 g(x)dx$

$$9ave = \frac{1}{2-0} \int_{0}^{3} g(x)dx$$

 $0.9 = \frac{1}{2} \int_{0}^{3} g(x)dx$, $50 \int_{0}^{3} g(x)dx = 2 \cdot (0.9) = [1.8]$