MAT 137 (Calculus II) Prof. Swift

Introduction to Differential Equations

1. Verify that $y=3 e^{x^{2}}$ is a solution to the Initial Value Problem $\frac{d y}{d x}=2 x y, y(0)=3$.
2. Verify that the function $y=c_{1} e^{x}+c_{2} e^{-x}$ is a solution to the Ordinary Differential Equation (ODE) $\frac{d^{2} y}{d x^{2}}=y$, also written as $y^{\prime \prime}=y$, for any values of the constants c_{1} and c_{2}. Find the solution to the ODE that satisfies the initial conditions $y(0)=0$, $y^{\prime}(0)=2$.

MAT 137 (Calculus II) Prof. Swift

Introduction to Differential Equations

1. Verify that $y=3 e^{x^{2}}$ is a solution to the Initial Value Problem $\frac{d y}{d x}=2 x y, y(0)=3$.
2. Verify that the function $y=c_{1} e^{x}+c_{2} e^{-x}$ is a solution to the Ordinary Differential Equation (ODE) $\frac{d^{2} y}{d x^{2}}=y$, also written as $y^{\prime \prime}=y$, for any values of the constants c_{1} and c_{2}. Find the solution to the ODE that satisfies the initial conditions $y(0)=0$, $y^{\prime}(0)=2$.
3. The following figure is the slope field for some ODE $y^{\prime}=f(x, y)$. Sketch two solutions to the ODE: One that satisfies the initial condition $y(0)=3$, and another that satisfies the initial condition $y(0)=-2$.

4. The following figure is the slope field for some ODE $y^{\prime}=f(x, y)$. Sketch two solutions to the ODE: One that satisfies the initial condition $y(0)=3$, and another that satisfies the initial condition $y(0)=-2$.

