MAT 137 (Calculus II) Prof. Swift

Introduction to Differential Equations

1. Verify that $y = 3e^{x^2}$ is a solution to the Initial Value Problem $\frac{dy}{dx} = 2xy$, y(0) = 3.

2. Verify that the function $y = c_1 e^x + c_2 e^{-x}$ is a solution to the Ordinary Differential Equation (ODE) $\frac{d^2y}{dx^2} = y$, also written as y'' = y, for any values of the constants c_1 and c_2 . Find the solution to the ODE that satisfies the initial conditions y(0) = 0, y'(0) = 2.

= (, ex+(, ex I.C. Y0)= (, e0+(, 0)= F,+(=0

$$y'(0) = (10^{4} + 10^{4})^{2}$$

Add $z(1+(1-(1-0))^{2})^{2}$
The solution that $z(1+(1-0))^{2}$
Satisfies the DC's is $z(1+(1-0))^{2}$
 $y''(0) = (10^{4} + (1-0))^{2}$
 $z(1+(1-0))^{2}$
 $z(1+(1-0))^{2}$
 $z(1+(1-0))^{2}$
 $z(1+(1-0))^{2}$

3. The following figure is the slope field for some ODE y' = f(x, y). Sketch two solutions to the ODE: One that satisfies the initial condition y(0) = 3, and another that satisfies the initial condition y(0) = -2.

