Worksheet on Modeling with First Order ODEs: Solutions

Suppose you drop a plush toy out of the window of a tall building. Let $v(t)$ be the speed of the toy, in feet per second, after t seconds of free fall. Assume that the frictional force is proportional to the speed, so v satisfies the ODE

$$
\frac{d v}{d t}=32-k v
$$

where k is a positive constant. You know that the terminal speed (usually called "terminal velocity") of the toy is 160 feet per second.

1. Find the value of k.

Since $v(t)=160$ is a constant solution (which has $\frac{d v}{d t}=0$) we know that $32-k \cdot 160=0$. Solving for k we find $k=32 / 160$, or $k=1 / 5$.
2. What is the initial speed $v(0)$?
$v(0)=0$, since the plush toy is dropped.
3. Find the velocity $v(t)$ as an explicit function of t.

Using $k=1 / 5$, the ODE is $\frac{d v}{d t}=32-\frac{1}{5} v=\frac{1}{5}(160-v)=-\frac{1}{5}(v-160)$. Separating the variables gives $\frac{d v}{v-160}=-\frac{1}{5} d t$. This form, with the unseen coefficient of 1 in front of v, is the best. Integrate both sides: $\ln |v-160|=-t / 5+c$. Exponentiate both sides to get $|v-160|=e^{-t / 5} \cdot e^{c}$. Thus $v-160= \pm e^{c} e^{-t / 5}$. While e^{c} is always positive, we know that one solution to the ODE is $v=160$. Thus the general solution to the ODE is $v(t)=160+C e^{-t / 5}$, where C is any constant; positive, negative, or 0 . Plug in $v(0)=0$ to get $0=160+C e^{0}$, so $C=-160$. The solution to the IVP is

$$
v(t)=160-160 e^{-t / 5}, \text { or } v=160\left(1-e^{-t / 5}\right)
$$

The speed $v(t)$ of the plush toy approaches the terminal speed of 160 feet per second exponentially, since $v(t)-160=C e^{-t / 5}$. Every 5 seconds, the difference between the speed of the plush toy and the terminal speed reduces by a factor of $e^{-1} \approx 1 / 3$.

