MAT 137 (Calculus II) Prof. Swift

Worksheet on Sequences

1. Write down the first 4 terms of the sequence $\left\{(-1)^{n} n^{2}\right\}_{n=1}^{\infty}$. Give your answer by filling in the blanks: $\left\{(-1)^{n} n^{2}\right\}_{n=1}^{\infty}=\{\quad, \quad, \quad, \ldots\}$.
2. Suppose the first few terms of a sequence are $\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots\right\}$. Find a possible formula for a_{n} such that $\left\{a_{n}\right\}_{n=1}^{\infty}=\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots\right\}$.

What is the limit of the sequence? $\lim _{n \rightarrow \infty} a_{n}=$
3. An arithmetic sequence satisfies $a_{n+1}=a_{n}+c$ for all n, where c is a constant.

Fill in the blanks, assuming the following is an arithmetic sequence: $\{3,1, \quad, \quad, \quad, \ldots\}$.
4. A geometric sequence satisfies $a_{n+1}=r \cdot a_{n}$ for all n, where r is a constant.

Fill in the blanks, assuming the following is a geometric sequence: $\{3,1, \quad, \quad, \quad, \ldots\}$.
5. Guess the limit of the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}=\{3,3.1,3.14,3.141,3.1415,3.14159, \ldots\}$. $\lim _{n \rightarrow \infty} a_{n}=$

