MAT 137 (Calculus II) Prof. Swift

Worksheet on Finite and Infinite Geometric Series

1. Let $s_{9}=\sum_{n=0}^{9}\left(\frac{2}{3}\right)^{n}$. Write out s_{9}, using "dot dot dot". Compute $s_{9}-\frac{2}{3} s_{9}$, canceling as many terms as possible, and simplify the expression. Solve for s_{9}.
2. Use a similar technique to find and simplify $s_{n}=\sum_{i=0}^{n}\left(\frac{2}{3}\right)^{i}$.
3. Sum the series (i.e. the infinite series) by completing the sentence. Fill in your answer to part 2 for s_{n}, and then evaluate the limit, using common sense.
$\sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{n}=\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \quad=$
