MAT 137 (Calculus II) Prof. Swift

Worksheet on Geometric Series and the Test for Divergence

1. Evaluate. $1-2+4-8+\ldots+(-2)^{n}=$
2. Evaluate. $1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\ldots=$
3. Suppose you know that $\lim _{n \rightarrow \infty} a_{n}=0$. What can you conclude? Circle one.

The series $\sum a_{n}$ converges to 0 .
The series $\sum a_{n}$ converges, but not necessarily to 0 .
The series $\sum a_{n}$ diverges.
The series $\sum a_{n}$ might converge, and it might diverge.
4. Suppose you know that $\lim _{n \rightarrow \infty} a_{n}=1$. What can you conclude? Circle one.

The series $\sum a_{n}$ converges to 1 .
The series $\sum a_{n}$ converges, but not necessarily to 1 .
The series $\sum a_{n}$ diverges.
The series $\sum a_{n}$ might converge, and it might diverge.
5. Evaluate $\lim _{n \rightarrow \infty} \frac{\sin (n)}{n}$, using the squeeze theorem. Does $\sum_{n=1}^{\infty} \frac{\sin (n)}{n}$ converge?

