MAT 137 (Calculus II) Prof. Swift

Worksheet on Geometric Series and the Test for Divergence

- 1. Evaluate. $1 2 + 4 8 + \ldots + (-2)^n =$
- 2. Evaluate. $1 \frac{1}{2} + \frac{1}{4} \frac{1}{8} + \ldots =$
- 3. Suppose you know that $\lim_{n\to\infty} a_n = 0$. What can you conclude? Circle one.

The series $\sum a_n$ converges to 0.

The series $\sum a_n$ converges, but not necessarily to 0.

The series $\sum a_n$ diverges.

The series $\sum a_n$ might converge, and it might diverge.

4. Suppose you know that $\lim_{n\to\infty} a_n = 1$. What can you conclude? Circle one.

The series $\sum a_n$ converges to 1.

The series $\sum a_n$ converges, but not necessarily to 1.

The series $\sum a_n$ diverges.

The series $\sum a_n$ might converge, and it might diverge.

5. Evaluate $\lim_{n \to \infty} \frac{\sin(n)}{n}$, using the squeeze theorem. Does $\sum_{n=1}^{\infty} \frac{\sin(n)}{n}$ converge?