MAT 137 (Calculus II) Prof. Swift

Worksheet on Geometric Series and the Test for Divergence

1. Evaluate. $1-2+4-8+\ldots+(-2)^n=\frac{1-(-2)^{n+1}}{1-(-2)}=\frac{1-(-2)^{n+1}}{2}$ 2. Evaluate. $1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\ldots=\frac{1}{1-(-1)}=\frac{2}{3}$ 3. Suppose you know that $\lim_{n\to\infty} a_n=0$ What

3. Suppose you know that $\lim_{n\to\infty} a_n = 0$. What can you conclude? Circle one.

The series $\sum a_n$ converges to 0.

The series $\sum a_n$ converges, but not necessarily to 0.

The series $\sum a_n$ diverges.

The series $\sum a_n$ might converge, and it might diverge.

4. Suppose you know that $\lim_{n\to\infty} a_n = 1$. What can you conclude? Circle one.

The series $\sum a_n$ converges to 1.

The series $\sum a_n$ converges, but not necessarily to 1.

The series $\sum a_n$ diverges.

The series $\sum a_n$ might converge, and it might diverge.

5. Evaluate $\lim_{n\to\infty}\frac{\sin(n)}{n}$, using the squeeze theorem. Does $\sum_{n=0}^{\infty}\frac{\sin(n)}{n}$ converge? Maybe.

-1 < sin(n) < 1

50 - L 5 5 1 1 2 4

lim (=1)=lim(=1)=0. So lim sin(n)=0.

ny as (=1)=lim(=1)=0. So lim sin(n)=0.

The test for Divergence is inconclusive.