MAT 137 (Calculus II) Prof. Swift

Worksheet on Geometric Series and Power Series

1. $\sum_{n=0}^{\infty} 4r^n = 4 + 4r + 4r^2 + \cdots$ converges to $\frac{4}{\sqrt{-r}}$ if $|r| \leq 1$ and diverges if $|r| \geq 1$.

2. $\sum_{n=0}^{\infty} 4x^n = 4 + 4x + 4x^2 + \cdots$ converges to 4 if $|x| \le 1$ and diverges if $|x| \ge 1$.

The interval of convergence of the power series is all x such that $\underline{} < x < \underline{}$, which is $(\underline{}, \underline{})$ in interval notation. The radius of convergence is $R = \underline{}$.

3. $\sum_{n=0}^{\infty} (2x)^n = 1 + 2x + 4x^2 + \cdots$ converges to if |x| and diverges if |x|. The interval of convergence of the power series is all x such that $|x| < x < \frac{1}{2}$, which is $|x| < \frac{1}{2}$, in interval notation. The radius of convergence is $|x| < \frac{1}{2}$.

Series 3 converges (f 12x/2/ (or 1x/2/)
and diverges if 12x/2/ (or 1x/2/)