MAT 137 (Calculus II) Prof. Swift

Power Series Representations of Some Functions
Use the known geometric series $\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots$ to write out the first 4 nonzero terms in a power series representation of the given functions. Fill in the blank with the coefficients in $f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$. Find the radius of convergence of the power series.

1. $f(x)=\frac{1}{1+3 x}=\frac{1}{1-(-3 x)}=$
$c_{0}=\quad, c_{1}=\quad, c_{2}=\quad, c_{3}=\quad$. The radius of convergence is $R=$
2. $f(x)=\frac{1}{1-x^{2}}=$
$c_{0}=\quad, c_{1}=\quad, c_{2}=\quad, c_{3}=\quad, c_{4}=\quad, c_{5}=\quad, c_{6}=\quad . R=$
3. $f(x)=\frac{x^{2}}{2-x}=x^{2} \frac{1}{2-x}=\frac{x^{2}}{2} \cdot \frac{1}{1-}=$
$c_{0}=\quad, c_{1}=\quad, c_{2}=\quad, c_{3}=\quad, c_{4}=\quad, c_{5}=\quad . R=$
