MAT 137 (Calculus II) Prof. Swift

Parametric Curves in the Plane, Part 2

1. Eliminate the parameter to get an equation in terms of x and y for the parabola with parametric description $x=1+t^{2}, y=3+t$. Write your answer in the form $x=A y^{2}+B y+C$.
2. Eliminate the parameter to get an equation in terms of x and y for the ellipse with parametric description $x=3 \cos (t), y=2 \sin (t)$. Hint: $\sin ^{2}(t)+\cos ^{2}(t)=1$ for all t.
3. The parametric equations $x=\sin (t)+\cos (t), y=\sin (t), 0 \leq t \leq 2 \pi$ trace out an ellipse. Find the points on this ellipse where the tangent line is horizontal. (Hint: The vertical velocity is zero when the curve has a horizontal tangent, so start by solving $\frac{d y}{d t}=0$ for t.)
