MAT 137 (Calculus II) Prof. Swift

Parametric Curves in the Plane, Part 2

- 1. Eliminate the parameter to get an equation in terms of x and y for the parabola with parametric description $x = 1 + t^2$, y = 3 + t. Write your answer in the form $x = Ay^2 + By + C$.
- 2. Eliminate the parameter to get an equation in terms of x and y for the ellipse with parametric description $x = 3\cos(t)$, $y = 2\sin(t)$. Hint: $\sin^2(t) + \cos^2(t) = 1$ for all t.
- 3. The parametric equations $x = \sin(t) + \cos(t)$, $y = \sin(t)$, $0 \le t \le 2\pi$ trace out an ellipse. Find the points on this ellipse where the tangent line is horizontal. (Hint: The vertical velocity is zero when the curve has a horizontal tangent, so start by solving $\frac{dy}{dt} = 0$ for t.)

1.
$$y = 3 + t$$
, so $t = y - 3$
 $x = (1 + t^2)$ becomes $x = (1 + (y - 3)^2) = (1 + y^2 - 6y + 9)$
 $x = (y^2 - 6y + 10)$

2. $x = 3 \cos(t)$ $y = 2 \sin(t)$
 $(\frac{x}{3})^2 = \cos^2(t)$ $(\frac{y}{2})^2 = \sin^2(t)$
 $\therefore (\frac{x}{3})^2 + (\frac{y}{2})^2 = \cos^2(t) + \sin^2(t)$
 $\therefore (\frac{x}{3})^2 + (\frac{y}{2})^2 = \cos^2(t) + \sin^2(t)$
 $\therefore (\frac{x}{3})^2 + (\frac{y}{2})^2 = \cos^2(t) + \sin^2(t)$
 $\therefore (\frac{x}{3})^2 + (\frac{y}{2})^2 = (\frac{y}{3})^2 = ($