MAT 137 (Calculus II) Prof. Swift

Polar Coordinates

It is easy to convert from polar to rectangular coordinates: $x=r \cos (\theta)$ and $y=r \sin (\theta)$.
However, converting from rectangular to polar coordinates is tricky: $r^{2}=x^{2}+y^{2}$ and $\tan (\theta)=y / x$ (provided $x \neq 0)$. If we are told we want $r \geq 0$, then choose $r=\sqrt{x^{2}+y^{2}}$. However, note that $\theta=\arctan (y / x)$ is only true in quadrant I. To find θ, draw a picture of the point in the $x-y$ plane! Consider what quadrant you are in.

Convert these points to polar coordinates. If possible, give the unique answer with $r \geq 0$ and $0 \leq \theta<2 \pi$. Do not use inverse trig functions in the final answer, if possible.
$(x, y)=(1, \sqrt{3})$ has polar coordinates $(r, \theta)=$
$(x, y)=(-1, \sqrt{3})$ has polar coordinates $(r, \theta)=$
$(x, y)=(-\sqrt{3},-1)$ has polar coordinates $(r, \theta)=$
$(x, y)=\left(\frac{1}{2}, \frac{-\sqrt{3}}{2}\right)$ has polar coordinates $(r, \theta)=$
$(x, y)=(-2,0)$ has polar coordinates $(r, \theta)=$
$(x, y)=(-3,4)$ has polar coordinates $(r, \theta)=$
$(x, y)=(0,-1)$ has polar coordinates $(r, \theta)=$
$(x, y)=(-2,-2)$ has polar coordinates $(r, \theta)=$
$(x, y)=(3,0)$ has polar coordinates $(r, \theta)=$
$(x, y)=(0,0)$ has polar coordinates $(r, \theta)=$
(This has many answers. Now you see why I said, "If possible give the unique answer ...".)
If you have extra time, work on the last webwork problem.

