MAT 137 (Calculus II) Prof. Swift

Polar Coordinates

It is easy to convert from polar to rectangular coordinates: $x = r\cos(\theta)$ and $y = r\sin(\theta)$.

However, converting from rectangular to polar coordinates is tricky: $r^2 = x^2 + y^2$ and $\tan(\theta) = y/x$ (provided $x \neq 0$). If we are told we want $r \geq 0$, then choose $r = \sqrt{x^2 + y^2}$. However, note that $\theta = \arctan(y/x)$ is only true in quadrant I. To find θ , draw a picture of the point in the x-y plane! Consider what quadrant you are in.

Convert these points to polar coordinates. If possible, give the unique answer with $r \geq 0$ and $0 \leq \theta < 2\pi$. Do not use inverse trig functions in the final answer, if possible.

and $0 \le \theta < 2\pi$. Do not use inverse trig functions in the final answer, if possible. $(x,y)=(1,\sqrt{3})$ has polar coordinates $(r,\theta)=(2,\frac{\pi}{3})$ from $30^{\circ}-60^{\circ}-90^{\circ}$ transle. $(x,y)=(-1,\sqrt{3}) \text{ has polar coordinates } (r,\theta)=(2,\frac{\pi}{3})$ $(x,y)=(-1,\sqrt{3}) \text{ has polar coordinates } (r,\theta)=(2,\frac{\pi}{3})$

 $\alpha = \frac{1}{3}$, as before $\alpha = \frac{1}{3}$.

 $(x,y) = (-\sqrt{3},-1)$ has polar coordinates $(r,\theta) = (2,711)$

r=2, as before d=1, 0=1+d=75

 $(x,y) = (\frac{1}{2}, \frac{-\sqrt{3}}{2})$ has polar coordinates $(r,\theta) = (1, \frac{3}{3})$

0 (\frac{1}{2} - \frac{1}{2})
\[\lambda \lamb

(x,y) = (-2,0) has polar coordinates $(r,\theta) = (2,0)$

$$(x,y) = (0,-1)$$
 has polar coordinates $(r,\theta) = (1,\frac{3\pi}{2})$

$$(x,y) = (-2,-2)$$
 has polar coordinates $(r,\theta) = (2\sqrt{2}, \frac{\pi}{4})$
 $(x,y) = (-2,-2)$ has polar coordinates $(r,\theta) = (2\sqrt{2}, \frac{\pi}{4})$
 $(x,y) = (-2,-2)$ has polar coordinates $(r,\theta) = (2\sqrt{2}, \frac{\pi}{4})$
 $(x,y) = (-2,-2)$ has polar coordinates $(r,\theta) = (2\sqrt{2}, \frac{\pi}{4})$
 $(x,y) = (-2,-2)$ has polar coordinates $(r,\theta) = (2\sqrt{2}, \frac{\pi}{4})$
 $(x,y) = (-2,-2)$ has polar coordinates $(r,\theta) = (2\sqrt{2}, \frac{\pi}{4})$
 $(x,y) = (-2,-2)$ has polar coordinates $(r,\theta) = (2\sqrt{2}, \frac{\pi}{4})$
 $(x,y) = (-2,-2)$ has polar coordinates $(r,\theta) = (2\sqrt{2}, \frac{\pi}{4})$
 $(x,y) = (-2,-2)$ has polar coordinates $(r,\theta) = (2\sqrt{2}, \frac{\pi}{4})$
 $(x,y) = (-2,-2)$ has polar coordinates $(r,\theta) = (2\sqrt{2}, \frac{\pi}{4})$
 $(x,y) = (-2,-2)$ has polar coordinates $(r,\theta) = (2\sqrt{2}, \frac{\pi}{4})$
 $(x,y) = (-2,-2)$ has polar coordinates $(r,\theta) = (2\sqrt{2}, \frac{\pi}{4})$
 $(x,y) = (-2,-2)$ has polar coordinates $(r,\theta) = (2\sqrt{2}, \frac{\pi}{4})$
 $(x,y) = (-2,-2)$ has polar coordinates $(r,\theta) = (2\sqrt{2}, \frac{\pi}{4})$
 $(x,y) = (-2,-2)$ has polar coordinates $(r,\theta) = (2\sqrt{2}, \frac{\pi}{4})$
 $(x,y) = (-2,-2)$ has polar coordinates $(r,\theta) = (2\sqrt{2}, \frac{\pi}{4})$
 $(x,y) = (-2\sqrt{2}, \frac{\pi}{4})$ by inspection: or $(x,y) = (-2\sqrt{2}, \frac{\pi}{4})$
 $(x,y) = (-2\sqrt{2}, \frac{\pi}{4})$ has polar coordinates $(r,\theta) = (2\sqrt{2}, \frac{\pi}{4})$ has polar coordinates

$$(x,y) = (0,0)$$
 has polar coordinates $(r,\theta) = (0,0)$, or $(0,1)$, or $(0,\frac{\pi}{4})$, etc.
 $v=0$, $0=a$ mything $=(0,a$ undefined) $=(0,a$ my thing) $=(0,a$ my thing)

(This has many answers. Now you see why I said, "If possible give the unique answer ...".)