

MAT 216 (Introduction to Matrix Algebra), Prof. Jim Swift
Worksheet 3: Gaussian Elimination and Gauss-Jordan Elimination

Do Gaussian elimination to put the following augmented matrix into row-echelon form. Then, continue and put the augmented matrix into reduced row-echelon form. (This is called Gauss-Jordan elimination.) Then, write down the solution of the system of linear equations with the original augmented matrix. Assume the unknowns are (x, y, z) .

$$\left[\begin{array}{ccc|c} 1 & 2 & 0 & -4 \\ 1 & 1 & 2 & 1 \\ 1 & 0 & 1 & 3 \end{array} \right] \xrightarrow{R_2 - R_1 \rightarrow R_2} \left[\begin{array}{ccc|c} 1 & 2 & 0 & -4 \\ 0 & -1 & 2 & 5 \\ 1 & 0 & 1 & 3 \end{array} \right]$$

MAT 216 (Introduction to Matrix Algebra), Prof. Jim Swift
 Worksheet 3: Gaussian Elimination and Gauss-Jordan Elimination

Do Gaussian elimination to put the following augmented matrix into row-echelon form. Then, continue and put the augmented matrix into reduced row-echelon form. (This is called Gauss-Jordan elimination.) Then, write down the solution of the system of linear equations with the original augmented matrix. Assume the unknowns are (x, y, z) .

$$\left[\begin{array}{ccc|c} 1 & 2 & 0 & -4 \\ 1 & 1 & 2 & 1 \\ 1 & 0 & 1 & 3 \end{array} \right] \rightsquigarrow R_2 - R_1 \rightarrow R_2 \left[\begin{array}{ccc|c} 1 & 2 & 0 & -4 \\ 0 & -1 & 2 & 5 \\ 1 & 0 & 1 & 3 \end{array} \right]$$

$$\rightsquigarrow R_3 - R_1 \rightarrow R_3 \left[\begin{array}{ccc|c} 1 & 2 & 0 & -4 \\ 0 & -1 & 2 & 5 \\ 0 & -2 & 1 & 7 \end{array} \right]$$

MAT 216 (Introduction to Matrix Algebra), Prof. Jim Swift
 Worksheet 3: Gaussian Elimination and Gauss-Jordan Elimination

Do Gaussian elimination to put the following augmented matrix into row-echelon form. Then, continue and put the augmented matrix into reduced row-echelon form. (This is called Gauss-Jordan elimination.) Then, write down the solution of the system of linear equations with the original augmented matrix. Assume the unknowns are (x, y, z) .

$$\left[\begin{array}{ccc|c} 1 & 2 & 0 & -4 \\ 1 & 1 & 2 & 1 \\ 1 & 0 & 1 & 3 \end{array} \right] \rightsquigarrow R_2 - R_1 \rightarrow R_2 \left[\begin{array}{ccc|c} 1 & 2 & 0 & -4 \\ 0 & -1 & 2 & 5 \\ 1 & 0 & 1 & 3 \end{array} \right]$$

$$\rightsquigarrow R_3 - R_1 \rightarrow R_3 \left[\begin{array}{ccc|c} 1 & 2 & 0 & -4 \\ 0 & -1 & 2 & 5 \\ 0 & -2 & 1 & 7 \end{array} \right]$$

$$\rightsquigarrow -R_2 \rightarrow R_2 \left[\begin{array}{ccc|c} 1 & 2 & 0 & -4 \\ 0 & 1 & -2 & -5 \\ 0 & -2 & 1 & 7 \end{array} \right]$$

MAT 216 (Introduction to Matrix Algebra), Prof. Jim Swift
 Worksheet 3: Gaussian Elimination and Gauss-Jordan Elimination

Do Gaussian elimination to put the following augmented matrix into row-echelon form. Then, continue and put the augmented matrix into reduced row-echelon form. (This is called Gauss-Jordan elimination.) Then, write down the solution of the system of linear equations with the original augmented matrix. Assume the unknowns are (x, y, z) .

$$\left[\begin{array}{ccc|c} 1 & 2 & 0 & -4 \\ 1 & 1 & 2 & 1 \\ 1 & 0 & 1 & 3 \end{array} \right] \rightsquigarrow R_2 - R_1 \rightarrow R_2 \left[\begin{array}{ccc|c} 1 & 2 & 0 & -4 \\ 0 & -1 & 2 & 5 \\ 1 & 0 & 1 & 3 \end{array} \right]$$

$$\rightsquigarrow R_3 - R_1 \rightarrow R_3 \left[\begin{array}{ccc|c} 1 & 2 & 0 & -4 \\ 0 & -1 & 2 & 5 \\ 0 & -2 & 1 & 7 \end{array} \right]$$

$$\rightsquigarrow -R_2 \rightarrow R_2 \left[\begin{array}{ccc|c} 1 & 2 & 0 & -4 \\ 0 & 1 & -2 & -5 \\ 0 & -2 & 1 & 7 \end{array} \right]$$

$$\rightsquigarrow R_3 + 2R_2 \rightarrow R_3 \left[\begin{array}{ccc|c} 1 & 2 & 0 & -4 \\ 0 & 1 & -2 & -5 \\ 0 & 0 & -3 & -3 \end{array} \right]$$

MAT 216 (Introduction to Matrix Algebra), Prof. Jim Swift
 Worksheet 3: Gaussian Elimination and Gauss-Jordan Elimination

Do Gaussian elimination to put the following augmented matrix into row-echelon form. Then, continue and put the augmented matrix into reduced row-echelon form. (This is called Gauss-Jordan elimination.) Then, write down the solution of the system of linear equations with the original augmented matrix. Assume the unknowns are (x, y, z) .

$$\left[\begin{array}{ccc|c} 1 & 2 & 0 & -4 \\ 1 & 1 & 2 & 1 \\ 1 & 0 & 1 & 3 \end{array} \right] \rightsquigarrow R_2 - R_1 \rightarrow R_2 \left[\begin{array}{ccc|c} 1 & 2 & 0 & -4 \\ 0 & -1 & 2 & 5 \\ 1 & 0 & 1 & 3 \end{array} \right]$$

$$\rightsquigarrow R_3 - R_1 \rightarrow R_3 \left[\begin{array}{ccc|c} 1 & 2 & 0 & -4 \\ 0 & -1 & 2 & 5 \\ 0 & -2 & 1 & 7 \end{array} \right]$$

$$\rightsquigarrow -R_2 \rightarrow R_2 \left[\begin{array}{ccc|c} 1 & 2 & 0 & -4 \\ 0 & 1 & -2 & -5 \\ 0 & -2 & 1 & 7 \end{array} \right]$$

$$\rightsquigarrow R_3 + 2R_2 \rightarrow R_3 \left[\begin{array}{ccc|c} 1 & 2 & 0 & -4 \\ 0 & 1 & -2 & -5 \\ 0 & 0 & -3 & -3 \end{array} \right]$$

$$\rightsquigarrow -\frac{1}{3}R_3 \rightarrow R_3 \left[\begin{array}{ccc|c} 1 & 2 & 0 & -4 \\ 0 & 1 & -2 & -5 \\ 0 & 0 & 1 & 1 \end{array} \right]$$

Row
Echelon
Form!

MAT 216 (Introduction to Matrix Algebra), Prof. Jim Swift
 Worksheet 3: Gaussian Elimination and Gauss-Jordan Elimination

Do Gaussian elimination to put the following augmented matrix into row-echelon form. Then, continue and put the augmented matrix into reduced row-echelon form. (This is called Gauss-Jordan elimination.) Then, write down the solution of the system of linear equations with the original augmented matrix. Assume the unknowns are (x, y, z) .

$$\left[\begin{array}{ccc|c} 1 & 2 & 0 & -4 \\ 1 & 1 & 2 & 1 \\ 1 & 0 & 1 & 3 \end{array} \right] \rightsquigarrow R_2 - R_1 \rightarrow R_2 \left[\begin{array}{ccc|c} 1 & 2 & 0 & -4 \\ 0 & -1 & 2 & 5 \\ 1 & 0 & 1 & 3 \end{array} \right]$$

$$\rightsquigarrow R_3 - R_1 \rightarrow R_3 \left[\begin{array}{ccc|c} 1 & 2 & 0 & -4 \\ 0 & -1 & 2 & 5 \\ 0 & -2 & 1 & 7 \end{array} \right]$$

$$\rightsquigarrow -R_2 \rightarrow R_2 \left[\begin{array}{ccc|c} 1 & 2 & 0 & -4 \\ 0 & 1 & -2 & -5 \\ 0 & -2 & 1 & 7 \end{array} \right]$$

$$\rightsquigarrow R_3 + 2R_2 \rightarrow R_3 \left[\begin{array}{ccc|c} 1 & 2 & 0 & -4 \\ 0 & 1 & -2 & -5 \\ 0 & 0 & -3 & -3 \end{array} \right]$$

$$\rightsquigarrow -\frac{1}{3}R_3 \rightarrow R_3 \left[\begin{array}{ccc|c} 1 & 2 & 0 & -4 \\ 0 & 1 & -2 & -5 \\ 0 & 0 & 1 & 1 \end{array} \right]$$

Row
Echelon
Form!

$$\rightsquigarrow R_1 - 2R_2 \rightarrow R_1 \left[\begin{array}{ccc|c} 1 & 0 & 4 & 6 \\ 0 & 1 & -2 & -5 \\ 0 & 0 & 1 & 1 \end{array} \right]$$

MAT 216 (Introduction to Matrix Algebra), Prof. Jim Swift
 Worksheet 3: Gaussian Elimination and Gauss-Jordan Elimination

Do Gaussian elimination to put the following augmented matrix into row-echelon form. Then, continue and put the augmented matrix into reduced row-echelon form. (This is called Gauss-Jordan elimination.) Then, write down the solution of the system of linear equations with the original augmented matrix. Assume the unknowns are (x, y, z) .

$$\left[\begin{array}{ccc|c} 1 & 2 & 0 & -4 \\ 1 & 1 & 2 & 1 \\ 1 & 0 & 1 & 3 \end{array} \right] \rightsquigarrow R_2 - R_1 \rightarrow R_2 \left[\begin{array}{ccc|c} 1 & 2 & 0 & -4 \\ 0 & -1 & 2 & 5 \\ 1 & 0 & 1 & 3 \end{array} \right]$$

$$\rightsquigarrow R_3 - R_1 \rightarrow R_3 \left[\begin{array}{ccc|c} 1 & 2 & 0 & -4 \\ 0 & -1 & 2 & 5 \\ 0 & -2 & 1 & 7 \end{array} \right]$$

$$\rightsquigarrow -R_2 \rightarrow R_2 \left[\begin{array}{ccc|c} 1 & 2 & 0 & -4 \\ 0 & 1 & -2 & -5 \\ 0 & -2 & 1 & 7 \end{array} \right]$$

$$\rightsquigarrow R_3 + 2R_2 \rightarrow R_3 \left[\begin{array}{ccc|c} 1 & 2 & 0 & -4 \\ 0 & 1 & -2 & -5 \\ 0 & 0 & -3 & -3 \end{array} \right]$$

$$\rightsquigarrow -\frac{1}{3}R_3 \rightarrow R_3 \left[\begin{array}{ccc|c} 1 & 2 & 0 & -4 \\ 0 & 1 & -2 & -5 \\ 0 & 0 & 1 & 1 \end{array} \right]$$

Row
Echelon
Form!

$$\rightsquigarrow R_1 - 2R_2 \rightarrow R_1 \left[\begin{array}{ccc|c} 1 & 0 & 4 & 6 \\ 0 & 1 & -2 & -5 \\ 0 & 0 & 1 & 1 \end{array} \right]$$

$$\rightsquigarrow R_1 - 4R_3 \rightarrow R_1 \left[\begin{array}{ccc|c} 1 & 0 & 0 & 2 \\ 0 & 1 & -2 & -5 \\ 0 & 0 & 1 & 1 \end{array} \right]$$

MAT 216 (Introduction to Matrix Algebra), Prof. Jim Swift
 Worksheet 3: Gaussian Elimination and Gauss-Jordan Elimination

Do Gaussian elimination to put the following augmented matrix into row-echelon form. Then, continue and put the augmented matrix into reduced row-echelon form. (This is called Gauss-Jordan elimination.) Then, write down the solution of the system of linear equations with the original augmented matrix. Assume the unknowns are (x, y, z) .

$$\left[\begin{array}{ccc|c} 1 & 2 & 0 & -4 \\ 1 & 1 & 2 & 1 \\ 1 & 0 & 1 & 3 \end{array} \right] \rightsquigarrow R_2 - R_1 \rightarrow R_2 \left[\begin{array}{ccc|c} 1 & 2 & 0 & -4 \\ 0 & -1 & 2 & 5 \\ 1 & 0 & 1 & 3 \end{array} \right]$$

$$\rightsquigarrow R_3 - R_1 \rightarrow R_3 \left[\begin{array}{ccc|c} 1 & 2 & 0 & -4 \\ 0 & -1 & 2 & 5 \\ 0 & -2 & 1 & 7 \end{array} \right]$$

$$\rightsquigarrow -R_2 \rightarrow R_2 \left[\begin{array}{ccc|c} 1 & 2 & 0 & -4 \\ 0 & 1 & -2 & -5 \\ 0 & -2 & 1 & 7 \end{array} \right]$$

$$\rightsquigarrow R_3 + 2R_2 \rightarrow R_3 \left[\begin{array}{ccc|c} 1 & 2 & 0 & -4 \\ 0 & 1 & -2 & -5 \\ 0 & 0 & -3 & -3 \end{array} \right]$$

$$\rightsquigarrow -\frac{1}{3}R_3 \rightarrow R_3 \left[\begin{array}{ccc|c} 1 & 2 & 0 & -4 \\ 0 & 1 & -2 & -5 \\ 0 & 0 & 1 & 1 \end{array} \right]$$

Row-Echelon Form!
 (REF)

$$\rightsquigarrow R_1 - 2R_2 \rightarrow R_1 \left[\begin{array}{ccc|c} 1 & 0 & 4 & 6 \\ 0 & 1 & -2 & -5 \\ 0 & 0 & 1 & 1 \end{array} \right]$$

$$\rightsquigarrow R_1 - 4R_3 \rightarrow R_1 \left[\begin{array}{ccc|c} 1 & 0 & 0 & 2 \\ 0 & 1 & -2 & -5 \\ 0 & 0 & 1 & 1 \end{array} \right]$$

$$\rightsquigarrow R_2 + 2R_3 \rightarrow R_2 \left[\begin{array}{ccc|c} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 1 \end{array} \right]$$

Reduced Row-Echelon Form (RREF)

The solution is $(x, y, z) = (2, -3, 1)$