MAT 239 (Differential Equations) Handout on Classification of Differential Equations

Consider the differential equation: $\frac{dQ}{dt} = -kQ$

- _____ What is the dependent variable?
- _____ What is/are the independent variable(s)?
- _____ Is this an ODE or a PDE?
- _____ Is the DE linear?
- _____ What is the order of the DE?
- _____ Is $Q = 3e^{kt}$ a solution of the DE? If not, can you guess a soluton?

Consider the differential equation: $(1 - x^2)y'' - 2xy' + 2y = 0$

- _____ What is the dependent variable?
- _____ What is/are the independent variable(s)?
- _____ Is this an ODE or a PDE?
- _____ Is the DE linear?
- _____ What is the order of the DE?
- _____ Is y = x a solution of the DE? If not, can you guess a soluton?

Consider the differential equation: $u_t + uu_x = 0$

- _____ What is the dependent variable?
- _____ What is/are the independent variable(s)?
- _____ Is this an ODE or a PDE?
- _____ Is the DE linear?
- _____ What is the order of the DE?
- _____ Is u = 0 a solution of the DE? If not, can you guess a soluton?

Consider the differential equation:
$$\frac{d^2\theta}{dt^2} = -\frac{g}{L}\sin(\theta)$$

- _____ What is the dependent variable?
- _____ What is/are the independent variable(s)?
- _____ Is this an ODE or a PDE?
- _____ Is the DE linear?
- _____ What is the order of the DE?
- _____ Is $\theta = \frac{1}{2}gt^2$ a solution of the DE? If not, can you guess a soluton?