Theory of Linear Homogeneous ODEs by Jim Swift @ NAU

Consider the second order linear homogeneous ODE

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0, \text { which can be written as } L[y]=0 .
$$

Suppose that p and q are continuous on an open interval I, possibly $I=(-\infty, \infty)$, and $t_{0} \in I$, and $y_{1}(t)$ and $y_{2}(t)$ are solutions to $L[y]=0$ on I. Then the following are equivalent. (That means that either they are all true, or they are all false.)

- The general solution to $L[y]=0$ on I is $y=c_{1} y_{1}(t)+c_{2} y_{2}(t)$.
- y_{1} and y_{2} are linearly independent functions on I. That is, neither of the functions is a constant multiple of the other function.
- $\left(c_{1} y_{1}(t)+c_{2} y_{2}(t)=0\right.$ for all $\left.t \in I\right) \Rightarrow\left(c_{1}=c_{2}=0\right)$

This is the usual definition of "linearly independent".

- $\left\{y_{1}, y_{2}\right\}$ is a fundamental solution set of $L[y]=0$. (This is just a definition: a fundamental solution set of a second order linear homogeneous ODE is any set of two linearly independent solutions to the ODE.)
- The family of functions $y=c_{1} y_{1}(t)+c_{2} y_{2}(t)$ can be used to solve every IVP $L[y]=0, y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=v_{0}$ (where y_{0}, v_{0} are any constants).
- The Wronskian evaluated at t_{0} is nonzero. That is, $W\left(y_{1}, y_{2}\right)\left(t_{0}\right) \neq 0$.
- The Wronskian is never 0 on I. That is, $W\left(y_{1}, y_{2}\right)(t) \neq 0$ for all $t \in I$.

The general solution of an nth order Linear Homogeneous ODE is a linear combination of a set of n linearly independent solutions. ("Linearly independent" means that none of the functions y_{i} can be written as a linear combination of the rest.)

$$
y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+\cdots+c_{n} y_{n}(t)
$$

The Wronskian of n functions generalizes $W\left(y_{1}, y_{2}\right)(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)$:

$$
W\left(y_{1}, y_{2}, \ldots, y_{n}\right)(t)=\operatorname{det}\left[\begin{array}{cccc}
y_{1}(t) & y_{2}(t) & \cdots & y_{n}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t) & \cdots & y_{n}^{\prime}(t) \\
y_{1}^{\prime \prime}(t) & y_{2}^{\prime \prime}(t) & \cdots & y_{n}^{\prime \prime}(t) \\
\cdots & \cdots & \cdots & \cdots \\
y_{1}{ }^{(n-1)}(t) & y_{2}{ }^{(n-1)}(t) & \cdots & y_{n}{ }^{(n-1)}(t)
\end{array}\right]
$$

The theory of ODEs uses the following facts from linear algebra:
Suppose M is a square $(n \times n)$ matrix, and \mathbf{d} is a constant vector. Consider the equation $M \mathbf{c}=\mathbf{d}$ for the unknown vector \mathbf{c}. (This can be written as a system of n linear equations in the n unknowns $c_{1}, c_{2}, \ldots, c_{n}$.)

- If $\operatorname{det}(M) \neq 0$, then the equation has a unique solution, namely $\mathbf{c}=M^{-1} \mathbf{d}$.
- If $\operatorname{det}(M)=0$, then the equation has either no solutions or an infinite number of solutions. Furthermore, the matrix M has no inverse.
Thus, we can solve the following system for c_{1} and c_{2} if $W\left(y_{1}, y_{2}\right)\left(t_{0}\right) \neq 0$, and there are either no solutions or infinitely many solutions if $W\left(y_{1}, y_{2}\right)\left(t_{0}\right)=0$:

$$
\left[\begin{array}{ll}
y_{1}\left(t_{0}\right) & y_{2}\left(t_{0}\right) \\
y_{1}^{\prime}\left(t_{0}\right) & y_{2}^{\prime}\left(t_{0}\right)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
v_{0}
\end{array}\right]
$$

