MAT 239, Differential Equations, Prof. Swift The solution to any IVP for 2 linear, homogeneous 1st order ODEs with constant coefficients

Systems of ODEs

These formula concern the solution to the Initial Value Problem

$$
\frac{d \mathrm{x}}{d t}=A \mathbf{x}, \quad \mathrm{x}(0)=\mathrm{x}_{0},
$$

where A is a 2×2 matrix with constant, real entries, and \mathbf{x}_{0} is a 2-dimensional vector with real components. Note that $\mathbf{x}^{\prime}=\frac{d \mathbf{x}}{d t}$ is sometimes used, and other variables besides \mathbf{x} are sometimes used.

The eigenvalues of A satisfy $\operatorname{det}(\mathrm{A}-\lambda \mathrm{I})=0$, and the associated eigenvectors satisfy $A \mathbf{v}=\lambda \mathbf{v}$, or $(A-\lambda I) \mathbf{v}=\mathbf{0}$.
$\mathbf{x}(t)=e^{\lambda t} \mathbf{v}$, is a solution to the ODE $\mathbf{x}^{\prime}=A \mathbf{x}$, for real or complex eigenvalues λ. But complex eigenvalues have complex eigenvectors and $e^{\lambda t} \mathbf{v}$ is a complex-valued vector. With repeated eigenvalues, we cannot find two linearly independent eigenvectors.

Case 1. A has real, distinct eigenvalues, $\lambda_{1} \neq \lambda_{2}$.
The general solution is $\mathbf{x}(t)=c_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{v}_{2}$. The constants c_{1} and c_{2} are determined by the initial condition.

Case 2. A has complex eigenvalues, $\lambda_{1}=a+i b, \lambda_{2}=a-i b$, with $b>0$. Compute $\mathbf{x}_{1}=(A-a I) \mathbf{x}_{0}$. Then the solution to the IVP is

$$
\mathbf{x}(t)=e^{a t}\left(\mathbf{x}_{0} \cos (b t)+\mathbf{x}_{1} \frac{1}{b} \sin (b t)\right)
$$

Case 3. A has repeated, real eigenvalues, $\lambda_{1}=\lambda_{2}$.
Compute $\mathbf{x}_{1}=\left(A-\lambda_{1} I\right) \mathbf{x}_{0}$. Then the solution to the IVP is

$$
\mathbf{x}(t)=e^{\lambda_{1} t}\left(\mathbf{x}_{0}+\mathbf{x}_{1} t\right)
$$

Note that cases 2 and 3 are actually easier computations. I don't think these formulas are in Paul's notes or our suggested textbook. If you see them somewhere on the web, send me the link!

In case 2 , an eigenvector for λ_{1} is $\mathbf{x}_{0}-i \frac{1}{b} \mathbf{x}_{1}$, and this formula follows from the general solution given in the book and Paul's notes.

In case 3 , if \mathbf{x}_{0} is an eigenvector, then $\mathbf{x}_{1}=\mathbf{0}$ and the solution is simply $\mathbf{x}(t)=e^{\lambda_{1} t} \mathbf{x}_{0}$. If \mathbf{x}_{0} is not an eigenvector, then $\mathbf{x}_{1} \neq \mathbf{0}$ is an eigenvector. The solution given follows from Paul's notes.

Note that case 3 is obtained from case 2 in the limit $b \rightarrow 0$, since $\lim _{b \rightarrow 0} \cos (b t)=1$ and $\lim _{b \rightarrow 0} \frac{1}{b} \sin (b t)=t$.

