MAT 239 (Differential Equations) Solutions to handout on Classification of Differential Equations

Consider the differential equation: $\frac{d Q}{d t}=-k Q$
$Q \quad$ What is the dependent variable?
$t \quad$ What is/are the independent variable(s)?
ODE Is this an ODE or a PDE?
Yes Is the DE linear?
1 What is the order of the DE?
No Is $Q=3 e^{k t}$ a solution of the DE? If not, can you guess a solution?
$Q=3 e^{-k t}$ and $Q=e^{-k t}$ and $Q=Q_{0} e^{-k t}$ for any Q_{0} are all solutions.
Consider the differential equation: $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0$
$y \quad$ What is the dependent variable?
$x \quad$ What is/are the independent variable(s)?
ODE Is this an ODE or a PDE?
Yes Is the DE linear? Note: DE is linear in the dependent variable, y.
2 What is the order of the DE?
Yes Is $y=x$ a solution of the DE? If not, can you guess a solution?

Consider the differential equation: $u_{t}+u u_{x}=0$
$u \quad$ What is the dependent variable?
t and $x \quad$ What is/are the independent variable(s)?
PDE Is this an ODE or a PDE? Note: there is more than one independent variable.
No Is the DE linear? Note: the uux term counts like u^{2}, making it nonlinear
1 What is the order of the DE?
Yes Is $u=0$ a solution of the DE? If not, can you guess a solution?
Yes, $u=0$ is a function, defined by $u(t, x)=0$ for all t and all x is a function. It is a solution to the PDE since $0=0$ is true for all t and all x. Keep an eye out for these constant solutions to differential equations.

Consider the differential equation: $\frac{d^{2} \theta}{d t^{2}}=-\frac{g}{L} \sin (\theta)$
$\theta \quad$ What is the dependent variable?
$t \quad$ What is/are the independent variable(s)?
ODE Is this an ODE or a PDE?
No Is the DE linear? Note: the $\sin (\theta)$ term is nonlinear in θ.
2 What is the order of the DE?
No Is $\theta=\frac{1}{2} g t^{2}$ a solution of the DE? If not, can you guess a solution?
The only solutions I can write down in closed form are $\theta=0$ and $\theta=\pi$ (or any integer multiple of π). These are constant functions of t.

