# MAT 239 (Differential Equations), Prof. Swift 

Worksheet 6 on Linear 1st Order ODEs
In this worksheet you will find the general solution to $x y^{\prime}+3 y=5 x^{2}$.
0 . Is $y(x)=0$ a solution? yes/no Is $y(x)=k$ a solution for any constant $k$ ? yes/no

1. Put the ODE $x y^{\prime}+3 y=5 x^{2}$ into standard form and identify $p(x)$ and $g(x)$. What is the $x$ value where $p$ and/or $g$ are not continuous?
2. Compute and simplify the "magic" integrating factor $\mu(x)$.
3. Multiply both sides of the standard form of the ODE by $\mu(x)$.
4. Compute $\frac{d}{d x}[\mu(x) y]$ leaving $y$ as an unknown function of $x$. This should be the Left Hand Side (LHS) of that ODE you wrote in part 3. Magic! Rewrite the ODE as

$$
\frac{d}{d x}[\mu(x) y]=\mu(x) g(x) .
$$

5. Integrate to find $\mu(x) y$ (don't forget the " $+C$ ") and then solve for $y$. This is the general solution!
