MAT 239 (Differential Equations), Prof. Swift Worksheet 6 on Linear 1st Order ODEs

In this worksheet you will find the general solution to $xy' + 3y = 5x^2$.

- 0. Is y(x) = 0 a solution? yes no Is y(x) = k a solution for any constant k? yes no $(0.5)^{1/2}$
- 1. Put the ODE $xy' + 3y = 5x^2$ into standard form and identify p(x) and g(x). What is the x value where p and/or q are not continuous?

2. Compute and simplify the "magic" integrating factor $\mu(x)$

$$\mu(x) = 2 \times P \left(\int \frac{3}{x} dx \right) = 2 \times P \left(3 \ln(x) \right) + C$$

$$= 2 \ln(x^3) + C = 2 \ln(x^3) \cdot e^{C}$$

$$= x^3 \cdot e^{C}. \text{ We didn't need } C! \left[\mu(x) = x^3 \right]$$

$$= (c \ln \cos c = 0)$$

2b. Compute $\frac{d}{dx}[\mu(x)y]$ after substituting the formula you found for $\mu(x)$, but leaving y as an unknown function of x.

3. Multiply both sides of the standard form of the ODE by $\mu(x)$.

$$x^3y' + 3x^2y = 5x^4$$

4. Note that the Left Hand Side (LHS) of that ODE is what you computed in part 2b. (This is the magic of $\mu(x)$.) Rewrite the ODE as $\frac{d}{dx}[\mu(x)y] = \mu(x)g(x)$.

5 Integrate to find $\mu(x)y$ (don't forget the "+C") and then solve for y. This is the general solution!

$$x^{3}y = \int 5x^{4}dx = x^{5}+c$$

 $y = x^{5}+c = x^{2}+c$
 $x^{3} = x^{5}+c$
 $x^{3} = x^{5}+c$