MAT 239 (Differential Equations), Prof. Swift Worksheet 13 on Exact ODEs

1. Show that the $\operatorname{ODE}\left(y^{2}+\cos (x)\right) d x+2 x y d y=0$ is exact.
2. That is, the ODE is really $d F:=\frac{\partial F}{\partial x} d x+\frac{\partial F}{\partial x} d x=0$ in disguise, and the general solution is $F(x, y)=C$.
Write down the two facts you know about F :
I. $\frac{\partial F}{\partial x}=$ \qquad and II. $\frac{\partial F}{\partial y}=$ \qquad .
Method A: We obtain the formula for $F(x, y)$ by finding 2 antiderivatives (that is, by doing 2 "partial integrals" with functions replacing the " $+C$ "), and finding an $F(x, y)$ that satisfies both expressions.
Equation I says that $F(x, y)=$

$$
+g(y)
$$

Equation II says that $F(x, y)=$

$$
+h(x)
$$

One choice of F, with no arbitrary constant, is $F(x, y)=$ Thus, the general solution to the ODE is

Also do method B: Take the expression for $F(x, y)$ with the $g(y)$ obtained from equation I and plug it into Equation II. Then solve for $g(y)$, which involves an arbitrary constant. Finally, get the formula for $F(x, y)$.

