MAT 239 (Differential Equations), Prof. Swift Worksheet 15 , on finding the constants in "the" general solution

One version of WeBWorK problem 2 says "The general solution of a certain differential equation can be written as $y(t)=c_{1} e^{2 t}+c_{2} e^{5 t}$." Then they ask you to solve an IVP.

I have a different question for you (question 2) that will be super-important in this class. In problems 2 and 3 you get some practice solving for c_{1} and c_{2}, and in problem 5 you learn the reason for the italics in the quote of WeBWorK problem 2.

1. What is that certain ODE from the WeBWorK problem?
2. Find the general solution to $y^{\prime \prime}-y=0$. Assume that t is the independent variable. You will use this general solution to solve 2 different IVPs in the next two problems.
3. Solve the IVP $y^{\prime \prime}-y=0, \quad y(0)=1, y^{\prime}(0)=0$. Call this solution $y_{a}(t)$.
4. Solve the IVP $y^{\prime \prime}-y=0, \quad y(0)=0, y^{\prime}(0)=1$. Call this solution $y_{b}(t)$.
5. The general solution to $y^{\prime \prime}-y=0$ can be written as $y(t)=a y_{a}(t)+b y_{b}(t)$, where a and b are arbitrary constants. Find the constants c_{1} and c_{2} in terms of a and b, and then find a and b in terms of c_{1} and c_{2}. Moral: The general solution can be written in many different ways.
6. Use the new form of the general solution to solve the IVP, $y^{\prime \prime}-y=0, \quad y(0)=7, y^{\prime}(0)=-3$.

Use what you know about y_{a} and y_{b} to find $a: y(0)=a y_{a}(0)+b y_{b}(0)=$
$=7$
Use what you know about y_{a} and y_{b} to find $b: y^{\prime}(0)=a y_{a}^{\prime}(0)+b y_{b}^{\prime}(0)=$ $=-3$ The solution, written in terms of $y_{a}(t)$ and $y_{b}(t)$, is

