Chapter 3. Second Order Linear Equations

TABLE 3.5.1 The Particular Solution of $a y^{\prime \prime}+b y^{\prime}+c y=g_{i}(t)$

$g_{i}(t)$	$Y_{i}(t)$
$P_{n}(t)=a_{0} t^{n}+a_{1} t^{n-1}+\cdots+a_{n}$	$t^{s}\left(A_{0} t^{n}+A_{1} t^{n-1}+\cdots+A_{n}\right)$
$P_{n}(t) e^{\alpha t}$	$t^{s}\left(A_{0} t^{n}+A_{1} t^{n-1}+\cdots+A_{n}\right) e^{\alpha t}$
$P_{n}(t) e^{\alpha t} \begin{cases}\sin \beta t & t^{s}\left[\left(A_{0} t^{n}+A_{1} t^{n-1}+\cdots+A_{n}\right) e^{\alpha t} \cos \beta t\right. \\ \cos \beta t & \left.+\left(B_{0} t^{n}+B_{1} t^{n-1}+\cdots+B_{n}\right) e^{\alpha t} \sin \beta t\right] \\ \hline\end{cases}$	

Notes. Here s is the smallest nonnegative integer ($s=0,1$, or 2) that will ensure that no term in $Y_{i}(t)$ is a solution of the corresponding homogeneous equation. Equivalently, for the three cases, s is the number of times 0 is a root of the characteristic equation, α is a root of the characteristic equation, and $\alpha+i \beta$ is a root of the characteristic equation, respectively.

