TABLE 3.5.1 The Particular Solution of $ay'' + by' + cy = g_i(t)$	
$g_i(t)$	$Y_i(t)$
$P_n(t) = a_0 t^n + a_1 t^{n-1} + \dots + a_n$	$t^{s}(A_{0}t^{n}+A_{1}t^{n-1}+\cdots+A_{n})$
$P_n(t)e^{\alpha t}$	$t^{s}(A_{0}t^{n}+A_{1}t^{n-1}+\cdots+A_{n})e^{\alpha t}$
$P_n(t)e^{\alpha t} \begin{cases} \sin\beta t\\ \cos\beta t \end{cases}$	$t^{s}[(A_{0}t^{n} + A_{1}t^{n-1} + \dots + A_{n})e^{\alpha t}\cos\beta t$ $+ (B_{0}t^{n} + B_{1}t^{n-1} + \dots + B_{n})e^{\alpha t}\sin\beta t]$

Notes. Here s is the smallest nonnegative integer (s = 0, 1, or 2) that will ensure that no term in $Y_i(t)$ is a solution of the corresponding homogeneous equation. Equivalently, for the three cases, s is the number of times 0 is a root of the characteristic equation, α is a root of the characteristic equation, and $\alpha + i\beta$ is a root of the characteristic equation, respectively.