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JAMES W. SWIFT

Abstract. We present an easily computed solution to the Initial Value Problem (IVP) for
the Ordinary Differential Equation (ODE) ẋ = Ax with the initial condition x(0) = x0,
when A is a 2× 2 real matrix.

1. Introduction

Consider the initial value problem (IVP)

(1) ẋ = Ax, x(0) = x0,

where A ∈ R2×2 and x0 ∈ R2. The solution is a function x : R → R2 that satisfies the
ordinary differential equation (ODE) x′(t) = Ax(t) and the initial condition x(0) = x0. The
process of finding the solution is taught in undergraduate courses on ODEs. The solution is
straightforward but messy, especially when the eigenvalues of A are repeated or complex. We
present a simple solution for any 2×2 matrix A. Our solution does not require a computation
of the eigenvectors of A.

2. Two-Dimensional ODEs

First we recall some results from the ODE course. The eigenvalues of A are the solutions
to det(A − λI) = 0, and for a 2 × 2 matrix they can be written in terms of the trace and
determinant of A. The set of eigenvalues {λ1, λ2} has the elements

trA±
√

(trA)2 − 4detA

2
= trA

2
±
√(

trA
2

)2 − detA.

tr(A)±
√
(tr(A))2 − 4det(A)

2
= tr(A)

2
±
√(

tr(A)
2

)2
− det(A).

The eigenvectors vi ∈ R2 are nonzero vectors that satisfy (A − λiI)vi = 0, for i ∈ {1, 2}.
When the eigenvalues of A are real and distinct, the general solution to the ODE is x(t) =
c1e

λ1tv1 + c2e
λ2tv2, and the IVP is solved by replacing c1, c2 ∈ R with the solution to

c1v1 + c2v2 = x0. When the eigenvalues of A are complex the real and imaginary part
of the complex-valued function eλ1v1 are two linearly independent solutions. When the
eigenvalues are repeated a second linearly independent solution to the ODE is found in a
process described at Paul’s notes.

Eigenvectors are very important in science and engineering, and they give deep under-
standing of the phase portrait of the ODE. It is with mixed feelings that we present a
methods of solving IVPs that do not use the eigenvectors at all. However, the ODE course
is very recipe-based, giving algorithms on how to solve many classes of ODEs. The methods
given here are so efficient that I believe they should be made available to students.
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In this section we present three propositions, which reflect the three possible signs of
(trA)2 − 4detA. We start with (trA)2 − 4detA < 0, so the eigenvalues of A are complex.

Proposition 2.1. Assume the eigenvalues of A ∈ R2×2 are a ± ib, where a, b ∈ R, with
b ̸= 0. Let x0 ∈ R2 and define x1 := (A− aI)x0. The solution to the IVP (1) is

(2) x(t) = eat
(
cos(bt)x0 +

sin(bt)
b

x1

)
.

Proof. Let λ1 = a+ ib be an eigenvalue of A with associated eigenvector v1 = vR+ ivI ∈ C2,
where vR,vI ∈ R2. The real and imaginary parts of the eigenvalue equation A(vR + ivI) =
(a+ ib)(vR + ivI) are AvR = avR − bvI , and AvI = avI + bvR. This implies that

(A− aI)vR = −bvI and (A− aI)vI = bvR.

These two equations are not independent. Assume the second equation is true. Then

(3) vR =
1

b
(A− aI)vI ,

and the first equation is true since

(A− aI)vR + bvI =
1

b
(A− aI)2vI + bvI =

1

b

(
(A− aI)2 + b2I

)
vI = 0.

The last equal sign holds since every matrix satisfies its characteristic equation, which for A
can be written as (λ− a)2 + b2 = 0.

While the eigenvalues are unique, the eigenvectors are not unique since any nonzero com-
plex scalar multiple of an eigenvector is an eigenvector. This freedom can be used to our
advantage. Let vI = x0. The first equation in (3) implies that vR = 1

b
(A − aI)x0. Thus

v1 = 1
b
x1 + ix0, where x1 is defined in the statement of the proposition. With this choice

of the eigenvector, one real-valued solution to the ODE is Im(eλ1tv1) = Im(eat(cos(bt) +

i sin(bt))(1
b
x1 + ix0)) = eat

(
cos(bt)x0 +

sin(bt)
b

x1

)
. This is the expression given in Equation

(2), and it satisfies the initial condition since cos(0) = 1 and sin(0) = 0. □

Remark 2.2. Note that the eigenvalues of A and the solution in Equation (2) are the same
if we choose b > 0 or b < 0. We can choose b > 0 without loss of generality.

Example 2.3. Let A =

[
−1 −2
5 −3

]
. The eigenvalues are −2 ± 3i, so a = −2 and b = 3 in

the proposition, and A − aI =

[
1 −2
5 −1

]
. The solution to the IVP with x0 =

[
1
0

]
is thus

x(t) = e−2t

(
cos(3t)

[
1
0

]
+ sin(3t)

3

[
1
5

])
.

Example 2.4. It is quite easy to find the general solution to an ODE by choosing a basis of
initial conditions. For example, with the same matrix as in Example *pervious*, the solution

with with x0 =

[
0
1

]
is x(t) = e−2t

(
cos(3t)

[
0
1

]
+ sin(3t)

3

[
−2
−1

])
. The general solution is a

linear combination of these two solutions,

x(t) = e−2t

[
cos(3t) + 1

3
sin(3t)

5
3
sin(3t)

]
c1 + e−2t

[
−2

3
sin(3t)

cos(3t)− 1
3
sin 3t

]
c2.



This is arguably the best way of writing the general solution, since the solution for the
arbitrary initial condition x(0) = x0 is

x(t) = e−2t

[
cos(3t) + 1

3
sin(3t) −2

3
sin(3t)

5
3
sin(3t) cos(3t)− 1

3
sin 3t

]
x0,

since the constants are

[
c1
c2

]
= x0.

Next we consider when (trA)2−4detA = 0, so A has repeated eigenvalues which we denote
as λ = a, a. The characteristic equation of A is (λ − a)2 = 0, so (A − aI)2 = 0. We say
that A has algebraic multiplicity 2. It is possible that A = aI, in which case every nonzero
vector is an eigenvector and A has geometric multiplicity 2. More commonly, A ̸= aI, and
there is a unique eigenvector up to scalar multiples and A has geometric multiplicity 1. In
most undergraduate ODE classes these two cases are considered separately, but the following
Proposition gives a unified solution.

Proposition 2.5. Assume that the eigenvalue a of A ∈ R2×2 has algebraic multiplicity 2.
Let x0 ∈ R2 and define x1 := (A− aI)x0. The solution to the IVP (1) is

(4) x(t) = eat (x0 + tx1) .

Proof. Note that (A− aI)x1 = (A− aI)2x0 = 0. Assume Equation (4) holds. Then

Ax(t)− x′(t) = eatA(x0 + tx1)− aeat(x0 + tx1)− eatx1

= eat ((A− aI)x0 + t(A− aI)x1 − x1)

= eat (x1 + t · 0− x1)

= 0.

Thus, Equation (4) is a solution to the ODE, and it clearly satisfies the initial condition. □

Finally, we turn to the case where (trA)2−detA > 0, and the eigenvalues of A are distinct
and real. This is the most straightforward case using traditional methods, but it still takes
quite a bit of calculation so solve an initial value problem.

Proposition 2.6. Assume the eigenvalues of A ∈ R2×2 are a±b, where a, b ∈ R, with b ̸= 0.
Let x0 ∈ R2 and define x1 := (A− aI)x0. The solution to the IVP (1) is

(5) x(t) = eat
(
cosh(bt)x0 +

sinh(bt)
b

x1

)
.

Proof. The definitions cosh(x) := (ex + e−x)/2 and sinh(x) := (ex − e−x)/2 show that

x(t) =
(
1
2
x0 +

1
2b
v0

)
e(a+b)t +

(
1
2
x0 − 1

2b
v0

)
e(a−b)t.

Note that 1
2
x0 +

1
2b
v0 =

1
2b
(bx0 + (A− aI)x0) =

1
2b
(A− (a− b)I)x0. Thus 1

2
x0 +

1
2b
v0 is an

eigenvector of A with eigenvalue a+ b, since

(A− (a+ b)I)(1
2
x0 +

1
2b
v0) =

1
2b
(A− (a+ b)I)(A− (a− b)I)x0 = 0.

The zero matrix multiplies x0 in that last equation, since the characteristic polynomial of A
can be factored as (λ− (a+ b))(λ− (a− b)) = 0, and a matrix satisfies its own characteristic
polynomial. A similar argument shows that 1

2
x0− 1

2b
v0 is an eigenvector of A with eigenvalue

a − b. Thus Equation (5) is a solution to ẋ = Ax, and the initial condition x(0) = x0 is
satisfied since cosh(0) = 1 and sinh(0) = 0. □



As an example, we compute the solution to ẋ = Ax for an arbitrary initial condition, and
thus compute exp(At), for the matrix A = [ 2 1

1 3 ]. The eigenvalues, λ = (5 ±
√
5)/2, are as

messy as they can be for a 2× 2 matrix with integer entries. Following Proposition 5,

(A− aI)x0 =

[
−1

2
1

1 1
2

] [
x0

y0

]
=

[
−1

2
x0 + y0

x0 +
1
2
y0

]
,

so the solution is

x(t) = e5t/2

(
cosh(

√
5t/2)

[
x0

y0

]
+

sinh(
√
5t/2)√
5

[
−x0 + 2y0
2x0 + y0

])
.

The solution can be written as x(t) = exp(At)x0, so we have computed

eAt = e5t/2

(
cosh(

√
5t/2)

[
1 0
0 1

]
+

sinh(
√
5t/2)√
5

[
−1 2
2 1

])
.

I plan to use actual numbers rather than x0, y0, and not talk about matrix exponentials
until the later section, which includes the following (and the remark which mentions eAt.

3. Higher Dimensional IVPs

Projection of x0 onto eigenspaces is messy, and I do not have shortcuts for that.
The cosh and sinh solution does not really have an analog in higher dimensions that I

know of.
However, we can get a very nice result for matrices with a single eigenvalue.
We can get a less clean result for a 2n×2n matrix with eigenvalues a± ib with multiplicity

n.
We start with the fundamental theorem of linear systems:

Proposition 3.1. Consider x0 ∈ Rn and A ∈ Rn×n. Let xk := Akx0 for k ∈ N := {1, 2, . . .}.
The solution to the IVP (1) is

(6) x(t) = x0 + tx1 +
t2

2!
x2 + · · ·+ tk

k!
xk + · · · .

Proof. Equation (6) satisfies the initial condition x(0) = x0, and it satisfies the ODE:
OTHER PROOFS USE Ax(t)− x′(t).

x′(t)− Ax(t) = x1 + tx2 +
t2

2!
x3 + · · ·+ tk

k!
xk+1 + · · ·

− (Ax0 + tAx1 +
t2

2!
Ax2 + · · ·+ tk

k!
Axk + · · · )

= (x1 − Ax0) + t(x2 − Ax1) + · · ·+ tk

k!
(xk+1 − Axk) + · · ·

= 0,

since xk = Axk−1 for all k ∈ N. The series converges, as shown in [?]. □

Remark 3.2. The typical statement of the Fundamental Theorem of Linear Systems [?] is
that the solution to (1) is x(t) = eAtx0, where the matrix exponential is defined in terms of
its Taylor series:

eAt = I + tA+ t2

2!
A2 + · · ·+ tk

k!
Ak + · · ·

We now present two similar propositions where the solution is given in terms of a finite
series.



Proposition 3.3. Assume that the eigenvalue a of A ∈ Rn×n has algebraic multiplicity n.
Let x0 ∈ Rn and define xk := (A− aI)kx0 for k ∈ {1, 2, . . . , n− 1}. The solution to the IVP
(1) is

(7) x(t) = eat
(
x0 + tx1 +

t2

2!
x2 +

t3

3!
x3 + . . .+ tn−1

(n−1)!
xn−1

)
.

Proof. The characteristic equation of A is (A−aI)n = 0, so (A−aI)n = 0 and (A−aI)xn−1 =
(A − aI)nx0 = 0. Define xk := (A − kI)kx0 for all k ∈ N and note that xk = 0 if k ≥ n.
With this definition, expression in Equation (7) can be written as an infinite series, which
satisfies

x′(t)− Ax(t) = aeat
(
x0 + tx1 + . . .+ tk

k!
xk + · · ·

)
+ eat

(
x1 + tx2 + . . .+ tk

k!
xk+1 + · · ·

)
− eat

(
Ax0 + tAx1 + · · ·+ tk

k!
Axk + · · ·

)
= eat

((
x1 − (A− aI)x0

)
+ t
(
x2 − (A− aI)x1

)
+ · · ·+ tk

k!

(
xk+1 − (A− aI)xk

)
+ · · ·

)
= 0.

The sum is equal to zero, since xk+1− (A−aI)xk = 0 for all integers k ≥ 0. Thus, Equation
(7) is a solution to the ODE, and it clearly satisfies the initial condition. □

Remark 3.4. A more sophisticated proof, along the lines of Perko, computes the matrix
exponential eAt. Since aI commutes with (A−aI), the exponential of the sum is the product
of the exponentials, and

eAt = eaIte(A−aI)t = (eatI)e(A−aI)t

= eat
(
I + t(A− aI) + t2

2!
(A− aI)2 + t3

3!
(A− aI)3 + . . .+ tn−1

(n−1)!
(A− aI)n−1

)
.

The Taylor series for e(A−aI)t terminates since (A− aI)n = 0. With our definition of xk, the
expression eAtx0 is the right-hand-side of Equation (7).

Finally, we can consider the case of repeated complex eigenvalues. This is not a case where
the matrix exponential can be computed easily. The following proposition is probably known,
but we are not aware of a statement of it. The proof extends the elementary techniques we
have been using in the previous proofs of this section.

Proposition 3.5. (Conjecture, actually) Assume that the eigenvalues of A ∈ R2n×2n are
a± ib with a, b ∈ R and b > 0, and that both have algebraic multiplicity n. Let λ1 = a− ib.
Given x0 ∈ R2n, there is unique vector y0 ∈ R2n such that (A− λ1I)

n(x0 + iy0) = 0. Define
xk,yk ∈ R2n for k ∈ {1, 2, . . . , n − 1} by xk + iyk = (A − λ1I)

k(x0 + iy0). The solution to
the IVP (1) is

x(t) = eat cos(bt)
(
x0 + tx1 +

t2

2!
x2 + . . .+ tn−1

(n−1)!
xn−1

)
(8)

+ eat sin(bt)
(
y0 + ty1 +

t2

2!
y2 + . . .+ tn−1

(n−1)!
yn−1

)
.

Proof. First we show the existence and uniqueness of y0. Define AR, AI ∈ R2n×2n by AR +
iAI := (A − λ1I)

n. Let λ2 = a + ib, and note that the characteristic equation of A is



(λ− λ1)
n(λ− λ2)

n = 0. Furthermore, (A− λ2I)
n = AR − iAI , so (AR + iAI)(AR − iAI) = 0.

This implies that

A2
R + A2

I = 0, and ARAI = AIAR.

For a given x0, AR and AI we need to solve (AR+iAI)(x0+iy0) = 0 for y0. This is equivalent
to

ARx0 − AIy0 = 0, and ARy0 + AIx0 = 0.

Assume that AI is nonsingular. We can solve the first equation and get y0 = A−1
I ARx0.

Then the second equation is satisfied since

ARA
−1
I ARx0 + AIx0 = A−1

I (A2
R + A2

I) = 0.

I’m not sure how to prove that AI is nonsingular. Try this: If AI is singular, then there are
infinitely many nonzero solutions in R2n to AIv = 0. So what?
Following the proof of Proposition 3.3, define xk + iyk = (A − λ1I)

k(x0 + iy0) for all
k ∈ N. This implies the recurrence relation xk+1+ iyk+1 =

(
(A−aI)+ ibI

)
(xk+ iyk), which

is equivalent to

(9) xk+1 = (A− aI)xk − byk, and yk+1 = (A− aI)yk + bxk.

Note that xk + iyk = 0 for all k ≥ n, so Equation (8) can be written with infinite series
which satisfy

x′(t)− Ax(t) = aeat cos(bt)
(
x0 + tx1 + . . .+ tk

k!
xk + · · ·

)
+ aeat sin(bt)

(
y0 + ty1 + . . .+ tk

k!
yk + · · ·

)
− beat sin(bt)

(
x0 + tx1 + . . .+ tk

k!
xk + · · ·

)
+ beat cos(bt)

(
y0 + ty1 + . . .+ tk

k!
yk + · · ·

)
+ eat cos(bt)

(
x1 + tx2 + . . .+ tk

k!
xk+1 + · · ·

)
+ eat sin(bt)

(
y1 + ty2 + . . .+ tk

k!
yk+1 + · · ·

)
− eat cos(bt)

(
Ax0 + tAx1 + · · ·+ tk

k!
Axk + · · ·

)
− eat sin(bt)

(
Ay0 + tAy1 + · · ·+ tk

k!
Ayk + · · ·

)
= eat cos(bt)

∞∑
k=0

tk

k!
(axk + byk + xk+1 − Axk)

+ eat sin(bt)
∞∑
k=0

tk

k!
(ayk − bxk + yk+1 − Ayk)

= eat cos(bt)
∞∑
k=0

tk

k!

(
xk+1 − (A− aI)xk + byk

)
+ eat sin(bt)

∞∑
k=0

tk

k!

(
yk+1 − (A− aI)yk − bxk

)
= 0.



The last equal sign is a consequence of Equation (9). The initial condition is satisfied, so
Equation (8) solves the IVP (1). □

Remark 3.6. I’m not sure if I should change the notation in the proposition about a com-
plex conjugate eigenvalues with multiplicity 1. The y0 here was called 1

b
x1 in the previous

proposition.

I’m not sure if I want the following formulas for the matrix exponential
If λ = a± ib then

eAt = eat
(
cos(bt)I +

sin(bt)

b
(A− aI)

)
If λ = a, a then

eAt = eat (I + t(A− aI))

If λ = a± b then

eAt = eat
(
cosh(bt)I +

sinh(bt)

b
(A− aI)

)
This actually shows an easy way to get a formula that probably is very well known. If all

of the eigenvalues of A are a, then A = aI + (A− aI), and the “S+N” decomposition gives

eAt = eat
(
I + t(A− aI) +

t2

2
(A− aI)2 + · · ·+ tn−1

(n− 1)!
(A− aI)n−1

)



The eigenvalues of A satisfy det(A − λI) = 0, and the associated eigenvectors satisfy
Av = λv, or (A− λI)v = 0.

x(t) = eλtv, is a solution to the ODE x′ = Ax, for real or complex eigenvalues λ. But
complex eigenvalues have complex eigenvectors and eλtv is a complex-valued vector. With
repeated eigenvalues, we cannot find two linearly independent eigenvectors.

Case 1. A has real, distinct eigenvalues, λ1 ̸= λ2.
The general solution is x(t) = c1e

λ1tv1+c2e
λ2tv2 . The constants c1 and c2 are determined

by the initial condition.

Case 2. A has complex eigenvalues, λ1 = a+ ib, λ2 = a− ib, with b > 0.
Compute x1 = (A− aI)x0. Then the solution to the IVP is

x(t) = eat
(
x0 cos(bt) + x1

1
b
sin(bt)

)
Case 3. A has repeated, real eigenvalues, λ1 = λ2.
Compute x1 = (A− λ1I)x0. Then the solution to the IVP is

x(t) = eλ1t (x0 + x1t)

Note that cases 2 and 3 are actually easier computations. I don’t think these formulas are
in Paul’s notes or our suggested textbook. If you see them somewhere on the web, send me
the link!

In case 2, an eigenvector for λ1 is x0 − i1
b
x1, and this formula follows from the general

solution given in the book and Paul’s notes.

In case 3, if x0 is an eigenvector, then x1 = 0 and the solution is simply x(t) = eλ1tx0.
If x0 is not an eigenvector, then x1 ̸= 0 is an eigenvector. The solution given follows from
Paul’s notes.

Note that case 3 is obtained from case 2 in the limit b → 0, since limb→0 cos(bt) = 1 and
limb→0

1
b
sin(bt) = t.

Email address: Jim.Swift@nau.edu

Department of Mathematics and Statistics, Northern Arizona University PO Box 5717,
Flagstaff, AZ 86011-5717, USA


