MAT 239 (Differential Equations), Prof. Swift The Method of Undetermined Coefficients §3.5, §4.3 and WeBWorK set 12_linear_nonhomogeneous

The general solution to a nonhomogeneous ODE L[y(t)] = g(t) is $y(t) = y_h(t) + y_p(t)$, where $y_h(t)$ is the general solution to the associated homogeneous ODE L[y(t)] = 0, and $y_p(t)$, also called Y(t), is any particular solution to the nonhomogeneous ODE.

The method of undetermined coefficients works when L[y] has constant coefficients, and when g(t) involves sums and products of polynomials, exponentials, sines, and cosines. The form of the particular solution $y_p(t)$ involves undetermined coefficients A, B, C, etc. To find a particular solution, plug $y_p(t)$ into the ODE and figure out the value of the undetermined coefficients.

Some comments about notation: The book uses Y(t) for the particular solution, whereas WeBWorK uses y_p . Also, the general solution to the associated homogeneous equation is sometimes denoted by y_c (the complementary solution) instead of y_h .

The table on p. 181 for the form of y_p is summarized in these two rules, which are justified by the method of annihilators (see pg. 237-238).

Rule 1. The original form of y_p is the general solution of the simplest linear homogeneous ODE with constant coefficients that has g(t) as a solution. Use A, B, C, etc. instead of the constants c_1, c_2, c_3 , etc.

Rule 2. If necessary, multiply the original form for y_p by t^s , the smallest power of t such that no terms in the new $y_p(t)$ are also in $y_h(t)$.

Example 1. Find a particular solution to $(D+1)(D+2)y = e^t$.

First of all, the characteristic equation is (r+1)(r+2) = 0, so $y_h(t) = c_1 e^{-t} + c_2 e^{-2t}$. Note that $g(t) = e^t$ is a solution to (D-1)y = 0. The operator (D-1) is called the annihilator of $g(t) = e^t$. The general solution to (D-1)y = 0 is $y = c_1 e^t$. Switch c_1 to A and get $y_p(t) = Ae^t$. This "original form" of y_p does not need to be modified since e^t is not a function in y_h for any choice of c_1 and c_2 . Plugging this form for y_p into the original nonhomogeneous ODE gives $6Ae^t = e^t$, so $A = \frac{1}{6}$, and $y_p(t) = \frac{1}{6}e^t$. The often painful calculation of A, B, etc. will be left out from now on.

Example 2. Find the form of the particular solution to $(D^2 + 3D + 2)y = \sin(t)$.

The left hand side is the same as for example 1, except it is FOILed out. Thus, $y_h(t) = c_1 e^{-t} + c_2 e^{-2t}$. Since $g(t) = \sin(t)$ is a solution to $(D^2 + 1)y = 0$, the form of the particular solution is $y_p(t) = A\cos(t) + B\sin(t)$. Rule 2 does not change it.

Example 3. Find the form of y_p for $y'' + 3y' + 2y = e^t + \sin(t)$.

This is the same left-hand side as before. The form of the particular solution is the sum of the previous two (with the letters shifted): $y_p(t) = Ae^t + B\cos(t) + C\sin(t)$.

Example 4. Find the form of y_p for $y'' + 3y' + 2y = t^2 + 3t$.

As before, $y_h(t) = c_1 e^{-t} + c_2 e^{-2t}$. The right-hand side, $g(t) = t^2 + 3t$, is annihilated by D^3 , and the general solution to $D^3 y = 0$ is $y = c_1 + c_2 t + c_3 t^2$. Rule 2 does not apply, and the form of the particular solution to the nonhomogeneous ODE is $y_p(t) = At^2 + Bt + C$. We traditionally write decreasing powers of t in y_p . **Example 5.** Find the form of y_p for $(D+1)(D+2)y = e^{-t}$.

As before, $y_h(t) = c_1 e^{-t} + c_2 e^{-2t}$. Here (D+1) annihilates $g(t) = e^{-t}$. The original form of the particular solution is $y_p = Ae^{-t}$. Rule 2 comes into effect, and we have to multiply the original form by t to get $y_p(t) = Ate^{-t}$.

Here is why it works: Any solution to $L[y] = (D+1)(D+2)y = e^{-t}$ must satisfy the homogeneous linear ODE $(D+1)^2(D+2)y = (D+1)e^{-t} = 0$. Thus, any solution to $L[y] = e^{-t}$ must be in the family of functions $y = c_1e^{-t} + c_2te^{-t} + c_3e^{-2t}$. But $L[c_1e^{-t} + c_3e^{-2t}] = 0$, so we might as well choose $y_p(t) = c_2te^{-t}$, or equivalently $y_p(t) = Ate^{-t}$.

Examples with
$$r = \pm 2i$$
: $y_h(t) = c_1 \cos(2t) + c_2 \sin(2t)$
 $(D^2 + 4)y = \sin(t), \quad y_p(t) = A\cos(t) + B\sin(t).$ No resonance.
 $y'' + 4y = \sin(2t), \quad y_p(t) = t(A\cos(2t) + B\sin(2t)).$ Resonance.
 $y'' + 4y = e^{-t}\sin(2t), \quad y_p(t) = e^{-t}(A\cos(2t) + B\sin(2t)).$ No resonance.
 $y'' + 4y = (3t + 1)\sin(2t), \quad y_p(t) = t[(At + B)\cos(2t) + (Ct + D)\sin(2t)].$

In this last example, avoid this common mistake: $y_p(t) \neq t(At + B)(C\cos(2t) + D\sin(2t))$. You need a separate polynomial in front of the cosine and sine terms.

Practice:

Write down $y_h(t)$ and the form of the particular solution y_p for these ODEs. The linear operator L is given in factored form to make it easier. This *will* be on the test. A pdf of this handout with the solutions is at our website.

 $D^2 y = 3$ $y_h = c_1 + c_2 t \quad y_p = At^2$ $(D+1)(D-1)y = e^t + 3e^{2t}$ $y_h = c_1 e^{-t} + c_2 e^t \quad y_p = tAe^t + Be^{2t}$

$$(D-1)^3 y = t^2 e^t$$

 $y_h = (c_1 + c_2t + c_3t^2)e^t$ $y_p = t^3(At^2 + Bt + C)e^t$

 $(D^2 + 9)^2 y = \cos(3t)$ $y_h = (c_1 + c_2 t)\cos(3t) + (c_3 + c_4 t)\sin(3t) \qquad y_p = t^2(A\cos(3t) + B\sin(3t))$