MAT 239 (Differential Equations), Prof. Swift The Method of Undetermined Coefficients

 $\S 3.5, \S 4.3$ and WeBWorK set 12_linear_nonhomogeneousThe general solution to a nonhomogeneous ODE $L[y(t)]=g(t)$ is $y(t)=y_{h}(t)+y_{p}(t)$, where $y_{h}(t)$ is the general solution to the associated homogeneous $\operatorname{ODE} L[y(t)]=0$, and $y_{p}(t)$, also called $Y(t)$, is any particular solution to the nonhomogeneous ODE.

The method of undetermined coefficients works when $L[y]$ has constant coefficients, and when $g(t)$ involves sums and products of polynomials, exponentials, sines, and cosines. The form of the particular solution $y_{p}(t)$ involves undetermined coefficients A, B, C, etc. To find a particular solution, plug $y_{p}(t)$ into the ODE and figure out the value of the undetermined coefficients.

Some comments about notation: The book uses $Y(t)$ for the particular solution, whereas WeBWorK uses y_{p}. Also, the general solution to the associated homogeneous equation is sometimes denoted by y_{c} (the complementary solution) instead of y_{h}.

The table on p .181 for the form of y_{p} is summarized in these two rules, which are justified by the method of annihilators (see pg. 237-238).

Rule 1. The original form of y_{p} is the general solution of the simplest linear homogeneous ODE with constant coefficients that has $g(t)$ as a solution. Use A, B, C, etc. instead of the constants c_{1}, c_{2}, c_{3}, etc.

Rule 2. If necessary, multiply the original form for y_{p} by t^{s}, the smallest power of t such that no terms in the new $y_{p}(t)$ are also in $y_{h}(t)$.

Example 1. Find a particular solution to $(D+1)(D+2) y=e^{t}$.
First of all, the characteristic equation is $(r+1)(r+2)=0$, so $y_{h}(t)=c_{1} e^{-t}+c_{2} e^{-2 t}$. Note that $g(t)=e^{t}$ is a solution to $(D-1) y=0$. The operator $(D-1)$ is called the annihilator of $g(t)=e^{t}$. The general solution to $(D-1) y=0$ is $y=c_{1} e^{t}$. Switch c_{1} to A and get $y_{p}(t)=A e^{t}$. This "original form" of y_{p} does not need to be modified since e^{t} is not a function in y_{h} for any choice of c_{1} and c_{2}. Plugging this form for y_{p} into the original nonhomogeneous ODE gives $6 A e^{t}=e^{t}$, so $A=\frac{1}{6}$, and $y_{p}(t)=\frac{1}{6} e^{t}$. The often painful calculation of A, B, etc. will be left out from now on.

Example 2. Find the form of the particular solution to $\left(D^{2}+3 D+2\right) y=\sin (t)$.
The left hand side is the same as for example 1, except it is FOILed out. Thus, $y_{h}(t)=c_{1} e^{-t}+c_{2} e^{-2 t}$. Since $g(t)=\sin (t)$ is a solution to $\left(D^{2}+1\right) y=0$, the form of the particular solution is $y_{p}(t)=A \cos (t)+B \sin (t)$. Rule 2 does not change it.

Example 3. Find the form of y_{p} for $y^{\prime \prime}+3 y^{\prime}+2 y=e^{t}+\sin (t)$.
This is the same left-hand side as before. The form of the particular solution is the sum of the previous two (with the letters shifted): $y_{p}(t)=A e^{t}+B \cos (t)+C \sin (t)$.

Example 4. Find the form of y_{p} for $y^{\prime \prime}+3 y^{\prime}+2 y=t^{2}+3 t$.
As before, $y_{h}(t)=c_{1} e^{-t}+c_{2} e^{-2 t}$. The right-hand side, $g(t)=t^{2}+3 t$, is annihilated by D^{3}, and the general solution to $D^{3} y=0$ is $y=c_{1}+c_{2} t+c_{3} t^{2}$. Rule 2 does not apply, and the form of the particular solution to the nonhomogeneous ODE is $y_{p}(t)=A t^{2}+B t+C$. We traditionally write decreasing powers of t in y_{p}.

Example 5. Find the form of y_{p} for $(D+1)(D+2) y=e^{-t}$.
As before, $y_{h}(t)=c_{1} e^{-t}+c_{2} e^{-2 t}$. Here $(D+1)$ annihilates $g(t)=e^{-t}$. The original form of the particular solution is $y_{p}=A e^{-t}$. Rule 2 comes into effect, and we have to multiply the original form by t to get $y_{p}(t)=A t e^{-t}$.

Here is why it works: Any solution to $L[y]=(D+1)(D+2) y=e^{-t}$ must satisfy the homogeneous linear ODE $(D+1)^{2}(D+2) y=(D+1) e^{-t}=0$. Thus, any solution to $L[y]=e^{-t}$ must be in the family of functions $y=c_{1} e^{-t}+c_{2} t e^{-t}+c_{3} e^{-2 t}$. But $L\left[c_{1} e^{-t}+c_{3} e^{-2 t}\right]=0$, so we might as well choose $y_{p}(t)=c_{2} t e^{-t}$, or equivalently $y_{p}(t)=A t e^{-t}$.

$$
\text { Examples with } r= \pm 2 i: y_{h}(t)=c_{1} \cos (2 t)+c_{2} \sin (2 t)
$$

$$
\begin{aligned}
& \left(D^{2}+4\right) y=\sin (t), \quad y_{p}(t)=A \cos (t)+B \sin (t) \text {. No resonance. } \\
& y^{\prime \prime}+4 y=\sin (2 t), \quad y_{p}(t)=t(A \cos (2 t)+B \sin (2 t)) . \text { Resonance. } \\
& y^{\prime \prime}+4 y=e^{-t} \sin (2 t), \quad y_{p}(t)=e^{-t}(A \cos (2 t)+B \sin (2 t)) . \text { No resonance. } \\
& y^{\prime \prime}+4 y=(3 t+1) \sin (2 t), \quad y_{p}(t)=t[(A t+B) \cos (2 t)+(C t+D) \sin (2 t)] .
\end{aligned}
$$

In this last example, avoid this common mistake: $y_{p}(t) \neq t(A t+B)(C \cos (2 t)+$ $D \sin (2 t))$. You need a separate polynomial in front of the cosine and sine terms.

Practice:

Write down $y_{h}(t)$ and the form of the particular solution y_{p} for these ODEs. The linear operator L is given in factored form to make it easier. This will be on the test. A pdf of this handout with the solutions is at our website.

$$
\begin{aligned}
& D^{2} y=3 \\
y_{h}= & c_{1}+c_{2} t \quad y_{p}=A t^{2} \\
& (D+1)(D-1) y=e^{t}+3 e^{2 t} \\
y_{h}= & c_{1} e^{-t}+c_{2} e^{t} \quad y_{p}=t A e^{t}+B e^{2 t} \\
& (D-1)^{3} y=t^{2} e^{t} \\
y_{h}= & \left(c_{1}+c_{2} t+c_{3} t^{2}\right) e^{t} \quad y_{p}=t^{3}\left(A t^{2}+B t+C\right) e^{t} \\
& \left(D^{2}+9\right)^{2} y=\cos (3 t) \\
y_{h}= & \left(c_{1}+c_{2} t\right) \cos (3 t)+\left(c_{3}+c_{4} t\right) \sin (3 t) \quad y_{p}=t^{2}(A \cos (3 t)+B \sin (3 t))
\end{aligned}
$$

