MAT 239 (Differential Equations), Prof. Swift
Worksheet on Differential Equations

1. Consider the $\mathrm{ODE} \frac{d y}{d x}=2 y$, also written as $y^{\prime}=2 y$.
(a) Verify that $y=5 e^{2 x}$ is a solution to the ODE. $y^{\prime}=5 e^{2 x} \cdot 2=2\left(5 e^{2 x}\right)=2 y v$
(b) Verify that $y=C e^{2 x}$ is a solution for every constant $C \cdot y^{\prime}=C e^{2 \times} \cdot 2=2\left(c e^{2 x}\right)=2 y^{\swarrow}$

It is a fact that $y=C e^{2 x}$ is the general solution to the ODE. The general solution has 2 properties: (1) It is a solution for every choice of C. You already did that. (2) Every solution to the ODE is obtained by choosing C correctly.
(c) Find the particular solution to the Initial Value Problem $\frac{d y}{d x}=2 y, y(0)=3$. \qquad the general solution and find the C that works.) $3=C e^{2 \cdot 0}=C \cdot C=3, y=3 e^{2 x}$
2. Guess the general solution to the ODE $\frac{d y}{d x}=-y$. Verify property (1) for your guess. $y=C e^{-x} ; \quad y^{\prime}=C e^{-x}(-1)=-\left(C e^{-x}\right)=-y$
3. Solve the Initial Value Problem $\frac{d y}{d x}=-y, y(0)=2$.

$$
z=C e^{-0}=C \therefore \quad C=2, y=2 e^{-x}
$$

