MAT 239 (Differential Equations), Prof. Swift Worksheet 13 on Exact ODEs

1. Show that the ODE $(y^2 + \cos(x))dx + 2xy dy = 0$ is exact. $(y^2 + \cos(x)) = \frac{1}{2}(2xy) \qquad 2y = 2y \qquad \therefore ODE$ is anary

2. That is, the ODE is really $dF := \frac{\partial F}{\partial x} dx + \frac{\partial F}{\partial x} dx = 0$ in disguise, and the general solution is F(x,y) = C.

Write down the two facts you know about F:

I.
$$\frac{\partial F}{\partial x} = \frac{y^2 + \cos(x)}{\partial y}$$
 and II. $\frac{\partial F}{\partial y} = \frac{2xy}{}$.

Method A: We obtain the formula for F(x,y) by finding 2 antiderivatives (that is, by doing 2 "partial integrals" with functions replacing the "+C"), and finding an F(x,y) that satisfies both expressions.

Equation I says that $F(x,y) = xy^2 + sin(x) + g(y)$

Equation II says that $F(x,y) = (x,y)^2 + h(x)$

One choice of F, with no arbitrary constant, is $F(x,y) = xy^2 + sn(x)$ Thus, the general solution to the ODE is $xy^2 + sn(x) = c$

Also do method B: Take the expression for F(x, y) with the g(y) obtained from equation I and plug it into Equation II. Then solve for g(y), which involves an arbitrary constant. Finally, get the formula for F(x, y).

$$F(x,y) = xy^2 + \sin(x) + g(y)$$

 $\frac{\partial F}{\partial y} = 2xy + g'(y) = 2xy$
 $g'(y) = 0$, $g(y) = c$
 $F(x,y) = xy^2 + \sin(x) + c^2$
The solution is $[xy^2 + \sin(x)] = c$