MAT 239 (Differential Equations), Prof. Swift Worksheet 16, on the Most Beautiful Fundamental Solution Set.

The ODE y'' + p(x)y' + q(x)y = 0 can be written as L[y] = 0, where $L = D^2 + p(x)D + q(x)$. Assume that p and q are continuous at 0. We don't know p and q, so we have no hope of actually writing down the formula for any solutions other than y(x) = 0.

Let $y_1(x)$ be the solution to the IVP L[y] = 0, y(0) = 1, y'(0) = 0. Write down what this tells you about the function $y_1(x)$. (Recall day one: What is a DE? What is a solution to a DE?)

Let $y_2(x)$ be the solution to the IVP L[y] = 0, y(0) = 0, y'(0) = 1. What do you know about y_2 ?

Use the properties of linear operators to show that $L[c_1y_1(t) + c_2y_2(t)] = 0$ for all t.

You have just proved the superposition principle. If y_1 and y_2 are solutions to a linear homogeneous ODE, then $y = c_1y_1(t) + c_2y_2(t)$ is a solution to that same ODE for any real numbers c_1 and c_2 . Find the solution to L[y] = 0, $y(0) = y_0$, $y'(0) = v_0$ for any y_0 and v_0 . Since you have solved any IVP, you have shown that $y = c_1y_1(t) + c_2y_2(t)$ is the general solution to L[y] = 0.

Let's put some flesh on those bones. The rest of the questions have one ODE with different ICs. 2. Solve the IVP y'' - 4y = 0, y(0) = 1, y'(0) = 0. Call this solution $y_1(x)$.

3. Solve the IVP y'' - 4y = 0, y(0) = 0, y'(0) = 1. Call this solution $y_2(x)$.

4. Without doing any more work, solve these IVPs: Solve the IVP y'' - 4y = 0, y(0) = 3, y'(0) = 2.

Solve the IVP y'' - 4y = 0, y(0) = -2, y'(0) = 1.

Solve the IVP y'' - 4y = 0, y(0) = 0, y'(0) = -2.