MAT 239 (Differential Equations), Prof. Swift Worksheet 16, on the Most Beautiful Fundamental Solution Set.

The ODE $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$ can be written as $L[y]=0$, where $L=D^{2}+p(x) D+q(x)$. Assume that p and q are continuous at 0 . We don't know p and q, so we have no hope of actually writing down the formula for any solutions other than $y(x)=0$.
Let $y_{1}(x)$ be the solution to the IVP $L[y]=0, \quad y(0)=1, y^{\prime}(0)=0$. Write down what this tells you about the function $y_{1}(x)$. (Recall day one: What is a DE? What is a solution to a DE?)

Let $y_{2}(x)$ be the solution to the IVP $L[y]=0, \quad y(0)=0, y^{\prime}(0)=1$. What do you know about y_{2} ?

Use the properties of linear operators to show that $L\left[c_{1} y_{1}(t)+c_{2} y_{2}(t)\right]=0$ for all t.

You have just proved the superposition principle. If y_{1} and y_{2} are solutions to a linear homogeneous ODE, then $y=c_{1} y_{1}(t)+c_{2} y_{2}(t)$ is a solution to that same ODE for any real numbers c_{1} and c_{2}. Find the solution to $L[y]=0, \quad y(0)=y_{0}, y^{\prime}(0)=v_{0}$ for any y_{0} and v_{0}. Since you have solved any IVP, you have shown that $y=c_{1} y_{1}(t)+c_{2} y_{2}(t)$ is the general solution to $L[y]=0$.

Let's put some flesh on those bones. The rest of the questions have one ODE with different ICs.
2. Solve the IVP $y^{\prime \prime}-4 y=0, \quad y(0)=1, y^{\prime}(0)=0$. Call this solution $y_{1}(x)$.
3. Solve the IVP $y^{\prime \prime}-4 y=0, \quad y(0)=0, y^{\prime}(0)=1$. Call this solution $y_{2}(x)$.
4. Without doing any more work, solve these IVPs:

Solve the IVP $y^{\prime \prime}-4 y=0, \quad y(0)=3, y^{\prime}(0)=2$.

Solve the IVP $y^{\prime \prime}-4 y=0, \quad y(0)=-2, y^{\prime}(0)=1$.

Solve the IVP $y^{\prime \prime}-4 y=0, \quad y(0)=0, y^{\prime}(0)=-2$.

